## **5358 HW**

1. Prove the *law of importation* for Boolean (crisp) logic.

$$\left(\left(\bigcap_{i} A_{i}\right) \to C\right) \equiv \left(\bigcup_{i} \left(A_{i} \to C\right)\right)$$

2. Consider the following fuzzy rule as a component to disjunctive Combs control:

$$\begin{array}{rrrr} n & \rightarrow & z \\ z & \rightarrow & p \\ p & \rightarrow & n \end{array}$$

where n = negative, z = (near) zero and p = positive. Both the antecedent and the consequent have the same membership functions as shown in Figure 1.



Figure 1: Figure for Problem 3.

- For the antecedent, a = 2 and the memberships are a function of x.
- For the consequent, a = 1 and the memberships are a function of y.

Evaluate the corresponding actuator function, y = f(x), when

- (a) Defuzzification using the center of mass of the weighted sum of the consequent membership functions.
- (b) Defuzzification using the mode of the weighted sum of the consequent membership functions.
- (c) Defuzzification using clipping of the consequent membership functions.
- (d) Any comments or conclusions from your result?

| $y \downarrow x \rightarrow$ | n | z | p |
|------------------------------|---|---|---|
| n                            | p | p | z |
| z                            | p | z | n |
| p                            | z | n | n |

Table 1: Table for Problem 3.

- 3. Consider the Mamdani fuzzy rule table in Table 1. The fuzzy membership functions in Figure 1 apply for the antecedents x and y and the consequent z. Let a = 1. Plot the two dimensional control surface, z = f(x, y), when defuzzification uses
  - (a)  $\cdots$  the center of mass of the weighted sum of the consequent membership functions.
  - (b)  $\cdots$  the mode of the weighted sum of the consequent membership functions.
  - (c)  $\cdots$  clipping of the consequent membership functions.
  - (d) Any comments or conclusions from your result?