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The fuzzy inference engine is the foundation of most 
fuzzy expert systems and control systems.  From a 
linguistic description of cause and effect of a process, a 
fuzzy inference engine can be designed to emulate the 
process. 
 
Fuzzy Sets 
Conventional or crisp sets are binary.  An element 
either belongs to the set or doesn't.  The operations on 
these sets, such as complement, conjunction (logical 
OR) and injunction (logical AND) constitute 
conventional crisp logic. Consider the set of cities that 
lie more than 3000 miles from Los Angeles.  A city 
lies in the set or it doesn’t.  Fuzzy sets, on the other 
hand, have grades of memberships.   The set of cities 
`far' from Los Angeles is an example.  New York is 
clearly farther from LA than Chicago.  Thus, New 

York has a greater membership in this set than does 
Chicago.  The grade of membership lies on the interval 
of zero to one.  The assignment of grades of 
membership is somewhat arbitrary. Different grades 
will typically be assigned by different people.  No 
matter what the assigned membership function, 
however, we expect the membership of New York to 
be greater than that of Chicago.  We can write the 
fuzzy membership function, 
 
Thus, the city of LA has a membership of zero in the 
set while London has a membership of 0.9. 
 
The term far used to define this set is a fuzzy linguistic 
variable.  Language is full of such variables.  
Examples include close, heavy, light, big, small, smart, 
fast, slow, hot, cold, tall and short. For a specific 
element, the membership function for a given fuzzy 
set, say `good Olympic dives’, is equivalent to asking 
the question `On a scale of zero to ten, how good was 
high dive?'  When the Olympic judges hold their signs 
of judgment with numbers from one to ten, their 
individual numerical assessment, divided by 10, is a 
membership assessment of the goodness of the dive.   
 

Linguistic variables are commonly used in human 
communication.  Consider the case of giving a truck 
driver oral instructions to back up.  A crisp command 
would be "Back up the truck 6 feet and 7 and one half 
inches”.  A more typical command consists of a string  
of fuzzy linguistic variables.  `More ... more ... slow ... 
slower ... almost there ... stop!'.  The procedure works 
well even though the underlying membership functions 
for these commands may differ significantly from the 
instructor to the truck driver.  One's specific 
interpretation of the term `slow', for example, may 
differ from the other's. 
 
The fuzzy membership function given in Equation (1) 
is discrete.  Membership functions can also be 
continuous.  For example, the set of tall men  can have 
the membership function shown in Figure (2).  A 
continuous membership function for the set, B, of 
numbers near to two is 

A fuzzy set, A, is said to be a subset of B if 
 
 
The set of very good divers is, for example, a subset of 
good divers.  The impact of the adjective very on the 
membership function can be a simple squared 
operation.  For example, the set, V, of  numbers very 
near to two has a membership function 

Note that V is a subset of the fuzzy set B. 
 
Differences Between Fuzzy Membership Functions 
and Probability Density Functions 
On first exposure, fuzzy membership functions are 
often mistaken as probability density functions.  
Although both measure uncertainty, they are very 
different.  Here are some illustrations of that 
difference. 
 

• Billy has ten toes.  The probability Billy has 
nine toes is zero.  The membership of Billy in 
the set of people with nine toes, however, is 
nonzero.  A value of 0.7 might be appropriate. 
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Figure 2. Illustration of the fuzzy complement, or
NOT, operation.  The fuzzy set, A, from Figure 1,
consists of numbers close to integers.  The
membership function is shown here with broken
lines.  The complement is the set of numbers
NOT close to integers.  The membership function
for this set is show above by a bold line.  The sum
of the membership functions of a set and its
complement add to one.
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• A bottle of liquid has a probability of ½ of 
being rat poison and ½ of being pure water.  
A second bottle’s contents, in the fuzzy set of 
liquids containing lots of rat poison, is ½.  
The meaning of  ½ for the two bottles clearly 
differs significantly and would impact your 
choice should you be dieing of thirst. 

 
• Probabilities can be either crisp of fuzzy.  The 

probability that a fair die will show six is one 
sixth.  This is a crisp probability.  All credible 
mathematicians will agree on this exact 
number. The probability that the result of a 
die throw will be near six, on the other hand, 
is a fuzzy probability.  The weatherman's 
forecast of a probability of rain tomorrow 
being 70% is also a fuzzy probability.  Using 
the same meteorological data, another 
weatherman will typically announce a 
different probability. 
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Figure 1. Illustration of the operations of fuzzy intersection and union on two fuzzy membership functions.
The fuzzy membership function for the fuzzy set A, shown at the upper left, is for numbers that are close to 
integers.  The fuzzy membership for the set B, numbers near 2, is shown in the upper right.  The membership 
function for the intersection (logical AND) of the two sets, denoted by A⋅ B, is the minimum of the two 
component membership functions.  This is illustrated in the bottom left figure with the bold plot.  The fuzzy
OR of the fuzzy sets, denoted A+B, has a membership function equal to the maximum of the two membership
functions.  The result, shown in the bottom right, corresponds to the membership function of numbers either
close to an integer OR near the number 2. 
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IF   (GPA is H   AND    GRE is H ),  THEN E  ,  
OR IF [(GPA is H AND GRE is F),  
       OR (GPA is F  AND   GRE is H)], THEN G  
OR, IF (GPA is F AND GRE is F),  THEN A     
OR, IF (GPA is P OR GRE is P),   THEN P    

 
TABLE 2: A MORE COMPACT STATEMENT OF THE RULES 
IN TABLE  1.

IF   (½     AND    ¾),           THEN E ,  
OR IF [(½    AND     ¼), OR (½   AND   ¾)], THEN G,
OR, IF (½     AND     ¼),     THEN A,   
OR, IF (0       OR        0),     THEN P .  

 
TABLE 3: NUMERICAL INTERPRETATION OF THE 
ANTECEDENTS IN TABLE 2. 

IF   min(½ ,¾) = ½,              THEN E ,  
OR  IF [ max{min(½,¼), min(½,¾)}] = ½, THEN G, 
OR,  IF  min(½,¼) = ¼,       THEN A,    
OR,  IF max(0,0) = 0,       THEN P .   
 
                    TABLE 4: EVALUATION OF TABLE 3. 

 IF  
an undergraduate's GPA is high AND their GRE score is high,  

THEN  
an undergraduate student will make an excellent graduate student,

 
OR, IF  

their GPA is high AND their GRE score is fair,  
OR  

their GPA is fair AND their GRE score is high. 
THEN  

an undergraduate student will make a good graduate student, 
 
OR, IF  

their GPA is fair AND their GRE score is fair,  
THEN  

an undergraduate student will make an average graduate student, 
 
OR, OTHERWISE,  

the undergraduate student will make a poor graduate student. 
 

TABLE 1: AN EXAMPLE OF RULES USING FUZZY LINGUISTIC VARIABLES. 

Fuzzy Logic 
Elementary conventional crisp set 
operations include complementing, 
intersection and union.  The same 
operations can be performed on fuzzy 
sets.  For the intersection or AND 
operation, the fuzzy operation 
commonly used is minimum.  For the 
union or OR operation, the maximum 
is used.  Some examples are 
appropriate. 
 
In Figure 1, two fuzzy membership 
functions are shown.  The set A 
consists of those numbers close to 
integers.  The set is B is the set of 
numbers near to two.  Using “+” as the 
fuzzy union operation or, equivalently, 
a fuzzy OR, we form the membership 
function for A+B as 

where “max” denotes the maximum 
operation.  Similarly, for the fuzzy AND, using  “⋅” as 
the intersection operation, 

  
 

where “min” denotes performing the minimum 
operation.  An example of performing fuzzy 
intersection and union is illustrated in Figure 1. 
The complement of a set has a membership function 

This is illustrated in Figure 2. 
 
The intersection and union operations can also be used 
to assign memberships on the Cartesian product of two 
sets.  Consider the fuzzy membership of a set, G, of 
liquids that taste good. 
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Using the set,  LA, of  cities close to Los Angeles in 
Equation 1, we form the set 
 
  E = G ·LA  
      = liquids that taste good AND cities that  

are close to LA  
 
The membership function for E, given in the table on 
the top of the next page, is generated by performing a 
minimum operation on elements of G and LA.  

 
The set G+LA can similarly be defined by taking the 
maximum in this table. 
 
The operations of fuzzy intersection, union and 
complement have many properties of their crisp 
counterparts.  Intersection, for example, is distributive 
over the union operation and the union operation is 

)](),([max )( A xxx BBA µµµ =+

)](),([min )( A xxx BBA µµµ =⋅

)(1)( xx AA µµ −=



distributive over intersection.  DeMorgan's laws are 
applicable.  The fuzzy logic min and max operations, 
however, do not obey the law of excluded middle. 
Specifically, since 

min(µ  A,1-µ  A)≠0, 
it follows that  

φ≠⋅ AA  
and that fuzzy intersection using min does not obey the 
law of contradiction.  Similarly, since 

max(µ  A,1-µ  A)≠1 
it follows that  

 F   for fair, 
 G   for good,  
 H   for high,  
 L   for low,  
 P   for poor.  
 

The If-Then rules can then be written as shown in 
Table 2. The IF portions of these statements are 
referred to as antecedents.  The THEN portions are the 
consequents. 
 
Numerical Interpretation of the Fuzzy Antecedent 
The first step in building the fuzzy inference engine is 
quantification of the linguistic variables.  For the GPA 
and GRE’s, the fuzzy membership functions will be as 
is shown in Figure 3. 
 

   Los Angeles (0.0)     Chicago (0.5)   New York (0.8)    London(0.9) 
Swamp Water (0.0)     0.00    0.00         0.00  0.00 
Radish Juice    (0.5)     0.00    0.25         0.40  0.45 
Grape Juice      (0.9)     0.00  0.45       0.72 0.81 

           2.0             3.0             4.0 

µ P- GPA (x)    µ F- GPA (x)   µ H- GPA (x) 
1

GPA 
500           600            700        800 

µ P- GRE (x)   µ F- GPA(x) µ H- GPA (x)
1

GRE 
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U≠+ AA . 
Therefore, fuzzy intersection using the maximum 
operator does not obey the law of excluded middle.1 
 
Fuzzy If-Then Rules 
Cause and effect statements of a process are stated 
through if-then rules.  Consider the pedagogical 
example in Table 1 wherein the success of an 
undergraduate as a graduate student is inferred through 
consideration of their undergraduate grade point 
averages (GPA's) and their performance on the GRE 
analytic test. 
 
Note, first, the operations of IF, THEN, AND and OR.  
Each can be interpreted in a fuzzy sense.  The fuzzy 
linguistic variables are written in italics.  These rules 
can be simplified using the following linguistic 
variable abbreviations. 

A   for average,  
 E   for excellent, 

                                                           
1 There are other operations used for fuzzy intersection 
and union other than min and max.  Although some of 
these operations obey the laws of contradiction and 
excluded middle, the result is invariably a sacrifice of 
other properties. 

To illustrate, suppose Student A has a GPA of 3.5 and 
a GRE of 725.  This crisp numbers are now fuzzified 
using the membership functions in Figure 3.  For the 
GPA of 3.5, the values from the membership functions 
on the left plot in Figure 3 are 

µ P- GPA (3.5) =0,      
µ F- GPA (3.5) = ½,      
µ H- GPA (3.5) = ½          (2) 

 
Similarly, for the GRE of 733, from the right hand plot 
in Figure 3,  

µ P- GRE (725) =0, 
µ F- GRE (725) = ¼, 

           µ H- GRE (725) = ¾                      (3) 
 
As illustrated in Table 3, these fuzzy values can then 
be used in lieu of the fuzzy antecedent statements in 
the logic statement.  Recall the logical AND as a 
minimum operation and an OR as a maximum.  
Applying gives the results shown in Table 4.  Each of 
the consequent classes is now assigned a value or 
weight in accordance to the fuzzy logic operations.  
Excellent is assigned a value of ½, good a value of ½, 
average a value of  ¼ and poor a value of zero. Each 
consequent is now assigned a value.  It remains to 

Figure 3. Fuzzy membership functions for poor, fair and high scores in the GPA and GRE. 
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Figure 5. The results of multiplying each of the fuzzy 
membership functions in Figure 4 by their respective weights.

           2.5                5.0     7.5           10 
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Figure 4. Fuzzy membership functions for poor, average, good
and excellent rated graduate students used as the consequent in 
the running example.
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Figure 6. The gray area is that bounded by the sum of the
weighted membership functions in Figure 5.  The center of
mass of this object, marked by the balance point at d = 7.3, is
the value for the defuzzification.  
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If      GPA is  H    And     GRE is H,  Then E,   
Or, If  GPA is H   And     GRE is F,  Then G,   
Or, If  GPA is H   And     GRE is P,  Then P,   
Or, If  GPA is F   And      GRE is H,  Then G,  
Or, If  GPA is F   And      GRE is F,   Then A,   
Or, If  GPA is F   And      GRE is P,  Then P,   
Or, If  GPA is P   And      GRE is H,  Then P,   
Or, If  GPA is P   And      GRE is F,   Then P,   
Or, If  GPA is P   And      GRE is P,   Then P.   
 
TABLE 5 EXHAUSTIVE LISTING OF THE FUZZY 
RULES IN TABLE 1. 

combine, or defuzzify, these values into a single crisp 
number representing the consequent.  To do so, fuzzy 
membership functions must be assigned to each fuzzy 
linguistic variable defining the consequent.  One 
possibility is shown in Figure 4.  The type of graduate 
student will be measured on a scale of zero to ten with 
zero being the worst and 10 the most excellent.  This 
range can be assigned fuzzy membership functions as 
shown in Figure 4.   From the analysis, the poor 
membership weight is assigned a value of 0, the 
average a value of ¼, and the good and excellent 
weights are both ½.  One popularly used 
defuzzification method simply multiplies each 
membership function by its weight and takes the 
center of mass of the resulting functional sum as 
the final crisp value.  The weighting of the 
membership functions is shown in Figure 5.  The 
sum of the functions is shown in Figure 6. The 
center of mass of the weighted membership 
functions, in general, is given by 
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where the summation is over all of the 
consequent membership functions, {µ n(x)}, and 
their corresponding weights, {α n}.  If the area of 
the nth membership function is 
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Then the defuzzification can be written as 
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For the graduate student example, as illustrated in 
Figure 6, the defuzzification is at d = 7.3.  
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 P F H 
P P P P 
F P A G 
H P G E 
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TABLE 6 MATRIX OF 
FUZZY RULES. 

 
 P�0 F�½ H�½ 

P�0 P�0 P�0 P�0  

F�¼ P�0 A�¼ G�¼ 
H�¾ P�0 G�½ E�½ 

 
 
 

GPA 

G 
R 
E 

Grad  
Student  
Type 

TABLE 7 MATRIX OF FUZZY RULES WITH 
EXAMPLE ENTRIES. 

 
Car

Target speed 

Speed 

Speed Error
(E) 

  delay 
 

Fuzzy 
Controller 

Accelerator 
Control 
Signal 

Speed Error 
Change (∆E)

Figure 7. Illustration of a simple fuzzy cruise control. 

 
 
Matrix Descriptions of Fuzzy Rules 
 
Fuzzy If-Then rules 
can often be 
conveniently 
expressed in matrix 
form.  The fuzzy If-
Then rules of the 
running example can 
be concisely written 
as is shown in Table 
5.  When thus 
tabulated, the rules 
can be expressed 
nicely in a rule matrix as is shown in Table 6.  From 
this table, we read, for example, “If the GPA is fair 
AND the GRE is fair, then the graduate student will be 
average.”  The matrix structure is convenient for 
visualization of the numerical results of fuzzification.   
The numerical results from Equations (1) and (2) for 
the GPA and GRE of Student A are imposed on the 
rule matrix in Table 6.  Since each rule is linked with a 
fuzzy AND, the matrix entries are equal to the 
minimum of the column and row values.  This is also 
illustrated in Table 7.    
 
To defuzzify from these table entries, we are reminded 
from Table 5 that each of the elements of the matrix 
are linked by fuzzy OR’s.  Thus, the student is good if 
[(GPA is high AND GRE is fair) OR (GPA is fair and 
GRE is high)].   The two entries in Table 7 can thus be 
viewed as being linked by a fuzzy OR or maximum 
operation.  Therefore, the consequent of good is 
assigned a value of  
 

good � maximum(½,¼)= ½  
 

Similarly, 
            average � ¼ 
            excellent � ½ 
            poor  � maximum(0,0,0,0,0) =  0  

 
These consequent weights will defuzzify using the 
memberships functions in Figure 4, as before, as 7.3. 
 
Application to Control 
Fuzzy inference engines can be used effectively in 
many control problems.  For feedback tracking control, 
a commonly used antecedent the error between the 
current and desired state.  The change in error is also 

used.  To illustrate, consider the simple 

cruise control illustrated in Figure 7.  A desired speed 
is set and the car’s accelerator is to be set to achieve 
this speed.  The car’s speed is measured.  The 
difference between the true and desired speed is the 
error.  The error is delayed a short period of time and 
subtracted from the current error to assess the change 
in error.  Using the speed error, E, and the change in 
error, ∆E, the rules for the fuzzy cruise control might 
be as shown in Table 8.  The following abbreviations 
are used. 
 
From Table 8, we read, for example, “If the error is 
large positive and the change in error is negative, then 
the acceleration should be made small negative.”  To 
complete the fuzzy controller, fuzzy membership 
functions must be defined – five each for the two 
antecedents and nine for the consequent.  
Implementation of the fuzzy controller is then carried 
out in the same way as in the graduate student quality 
assessment example.  The error and change of error are 
fuzzified, the weights of the consequent membership 
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functions are computed using fuzzy logic, and the final 
control action is determined through the process of 
defuzzification. 
 

As is the case with any design, changes in the 
controller are typically made as its performance is 
monitored.  Tuning of fuzzy membership functions 
and/of rule table entries are typical.  This can 
be achieved with a “man in the loop” or by 
placing the fuzzy control process in that 
automatically tunes the system parameters 
for optimal performance. There exists 
numerous variations of fuzzy logic.  
Remarkably, a fine tuned fuzzy inference 
engine is relatively robust to the choice of its 
underlying fuzzy logic. 
 
Fuzzy control has a great advantage in its 
simplicity.  No knowledge of Laplace 
transforms or migrating poles in the s plane 
is required.  Classical control is a richly developed 
field.  For linear plants, properly tuned conventional 
control will typically perform superiorly.  Fuzzy 
control becomes more valuable when applied to 
nonlinear time-variant plants. 
 
Variations 
There exist numerous variations on the 
fundamental fuzzy inference engine thus far 
described.  Some of them are in need of 
address. 
 
Alternate Fuzzy Logic  
The minimum and maximum operations are 
one of many different operations that can be 
used to perform logical ANDS and ORS.  
There also exist alternate methods to generate the 
fuzzy complement.  One popular alternate is sum-
product inferencing, wherein the AND operation is 
performed using a multiplication of membership 
functions (rather than a minimum) and the OR 
operation by an add (rather than a maximum).  It the 
sum exceeds one, the value of the union is typically set 
to one. 

 
Defuzzification  
Defuzzification was performed in Figure 6 as the 
center of mass of the weighted membership functions.  
More generally, any measure of central tendency of the 
function can suffice.  The median, for example, could 
have been used.  (The defuzzification, in this case, 
would be at 7.5).  Also, the manner in which the 
consequent membership functions are weighted can 
differ.  The membership functions in Figure 4, for 
example, were multiplicatively weighted to give the 
curves shown in Figure 5.  The curves in Figure 5 are 
added and the center of mass used to find the 
defuzzified output.  A commonly used alternate 
method clips the consequence membership functions at 
their weight value. Recall that the weights for the 
membership functions for Figure 4 were (P,A,G,E) =   
(0, ¼, ½, ½).  Using these as clip values, the result, 
when applied to the fuzzy membership functions in 

Figure 4, is shown in Figure 8.  The sum of these 
curves is shown in Figure 9.  The center of mass of this 
curve, or some other measure of the curve’s central 
tendency, is the resultant value for defuzzification. 

 
Weighting Consequents  
In Table 7, a given consequent component’s weight 
was generated be taking the maximum of all the entries 
for the fuzzy set.  The final weight for G = good, for 
example, was max(½,¼) =½.  In practice, a number of 
alternate combinations or aggregations of these 

Figure 8. An alternate method of applying the weights of the 
fuzzy consequents is by clipping the consequent membership 
functions.  Here, the membership functions in Figure 4 are
clipped in accordance to the running example. 
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P SP Z SN N LN 
Z P SP Z SN N 
N LP P SP Z SN 
LN VLP LP P SP Z 
 

E 
 
 

∆E 

Acceleration 
Change 

TABLE  8. A RULE MATRIX FOR THE FUZZY 
CRUISE CONTROL. 

Figure 9. Addition of the clipped membership 
functions in Figure 8. 
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weights can be used to determine the composite weight 
other than the maximum operation. 
Alternate Inferencing Methods  
There exist alternate methods of fuzzy inferencing.  
Data base inferencing establishes the fuzzy rule table 
from a data base rather than based on fuzzy linguistic 
variables.  A powerful generalization proposed by 
Sugeno replaces the consequents with algebraic 
expressions. 
 
Further Reading 
There are numerous excellent texts of fuzzy systems 
and fuzzy control.  The offerings by George Klir are 
especially clear and precise.  Two books of collections 
of papers are those edited by Bezdek & Pal and Marks.  
The papers in Bezdek’s anthology focus on pattern 
recognition.  Marks’ collection contains papers on 
applications of fuzzy logic.  Papers are included in the 
application of fuzzy systems to numerous fields.  The 
original 1965 paper by Lotfi Zadeh, 
included in Bezdek’s book, is both 
remarkably readable and currently 
relevant.  It still serves as a superb 
introduction to fuzzy sets.  The paper 
by Arabshahi et al. presents one of 
many ways which a fuzzy inference 
engine can be tuned. Matlab’s fuzzy 

system toolbox is an excellent software tool for fuzzy 
system simulation.  
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