

Tactical Task Allocation and Resource Management in
Non-Stationary Swarm Dynamics

Jon H. Roach Robert J. Marks II Benjamin B. Thompson

Abstract—The allocation of resources between tasks within
a swarm of agents can be difficult without a centralized
controller. Disjunctive control has been shown to be a viable
method to control the behavior of a swarm. In this project, a
disjunctive fuzzy control system is used to solve the problem
of resource management. A multi-state swarm is evolved
with an offline learning algorithm to adapt to a dynamic
scenario with multiple objectives. Some of the emergent
behaviors developed through the evolutionary algorithm
were state-switching and recruitment techniques.

Index Terms—Keywords: swarm intelligence, multi-state,
task switching, fuzzy control, emergent behavior

I. INTRODUCTION

An important component of swarm intelligence
systems is division of labor. If there are multiple, possibly
competing, objectives, how is a group of autonomous units
able to decide how many units should work on each
objective? In this paper, we will demonstrate the ability of
these swarms to adapt to dynamic conditions by
autonomously reallocating resources as necessary in order
to achieve multiple objectives. Our solution is based on
strategies found in nature, both the state-switching
methods employed in ant colonies and recruitment
techniques found in swarms of bees [1]. These methods
are tested in a simulation that requires the swarms to
accomplish two objectives at the same time: defending a
friendly unit and attacking enemy targets. An evolutionary
learning algorithm is used to optimize these strategies
based on fitness scores. The resulting emergent behaviors
are shown to be robust as the swarms continue to perform
well even as the population of the swarm decreases.

II. SWARM INTELLIGENCE

In a swarm, each agent is computationally simple,
compared to the complexity of the whole. Individual
agents follow a set of simple rules which define the
agent’s behavior. However, when a large number of the
agents are allowed to work together, the result can be a
unique and sometimes surprising emergent behavior. For
the following simulations, decisions the agents make, such
as “Where do I go next?”, or “Should I begin working on a
new task?” are controlled via inputs from a group of
sensors. These inputs are fed into weighting functions
which determine the resulting decisions of the unit.

Previous work on similar projects [3][6] focused on

designing swarms with a single objective. These swarms
demonstrated the use of Combs control [6] as a viable
solution to determining the individual rules within a
swarm. Most previous simulations involved two swarms
competing in a simple game. By using an evolutionary
algorithm to optimize the fitness scores of these swarms,
each swarm was able to develop strategies and counter-
strategies to beat its opponent. Our goal throughout this
project is to expand upon the previous work to more
complex swarms that can achieve two or more objectives
in a dynamic environment.

III. DEVELOPMENT OF SCENARIO

The evolved swarm had two objectives. First, the
swarm needed to defend a central base from incoming
projectiles. Agents could detonate themselves to destroy
the enemy projectiles. However, these explosions would
also take out friendly units nearby. Second, the swarm
needed to seek out enemy units that were spawned at the
edges of the playing area. These enemy units periodically
fired projectiles towards the central base. Enemy units
were programmed to be stronger and required three agents
to detonate nearby within a short period of time. This
requirement was added to force the swarms to form groups
which would involve learning recruiting techniques. When
the friendly base took too much damage and was
destroyed, the simulation ended. A effective swarm in this
simulation would be able to defend its base while
simultaneously searching for and destroying enemy units.
Swarms were scored on how long they survived and how
many agents stayed within bounds. The solution requires
the swarm to allocate its resources between the two tasks
and find efficient methods to complete its objectives.

The movement of the agents is controlled using the
input from a variety of sensors. The agents are able to
sense their distance from friendly units, enemy units,
enemy projectiles, and the base. These distances are fed
into two sets of weighting functions to determine the
resulting movement. One set of weighting functions
determines movement toward or away from the object
being sensed, while the second set controls movement
parallel to the object. The weighting functions are
adjustable parameters that represent the rules that the
swarm follows. After a solution is found, we can look at
the resulting weighting functions to determine which
strategies were learned by the swarm. All of the sensors
have a limited range, so that agents are only aware of what
is happening within a localized area.

The only exception to this rule is a center sensor. Much
of the unique behavior of the swarms typically occurs at
the edges of the playing area. However, in many
applications there may not be a hard boundary to the
search area. So instead of a strict, rectangular boundary

John H. Roach is with L3 Mission Integration, Greenville, TX. 75403
USA (e-mail: Jon_Roach@Baylor.edu)

Robert J. Marks is with the Department of Electrical and Computer
Engineering, Baylor University, Waco, TX 76798 USA (e-mail:
Robert_Marks@baylor.edu)

Benjamin B. Thompson is with the Applied Research Laboratory, The
Pennsylvania State University, State College, PA 16804 USA (e-mail:
bbt10@arl.psu.edu)

Jon H. Roach, Robert J. Marks II and Benjamin B. Thompson.
"Tactical task allocation and resource management in non-stationary swarm dynamics."

2013 International Joint Conference on Neural Networks (IJCNN), pp.1-5. DOI: 10.1109/IJCNN.2013.6706879

which was used before, we modified the game to use a
softer, circular boundary. The units are able to go
anywhere, but after they reach a certain distance from the
center, they are inclined to move back in using a separate
weighting function. For this sensor we made the distance
at which the sensor was turned on an adjustable parameter.
This allowed the swarm to actually learn an optimal area
to search within. Since the center sensor was different for
units in different states, this sensor actually resulted in
some unexpected recruitment techniques which we will
explain later.

A. Multiple States

Since there are two main objectives the swarm is trying
to accomplish, there are two states the agents are allowed
to take: attackers and defenders. Defenders are equipped to
defend the base and destroying incoming projectiles, while
the attackers are capable of searching for the enemy units,
forming groups and attacking the enemies in force. Part of
the inspiration for this division of labor is found in
colonies of ants. Within most ant colonies, there are
multiple roles the ants fulfill. When circumstances dictate,
ants are able to temporarily switch tasks to help the rest of
the anthill with a task that needs extra work. For instance,
a soldier ant that senses a large amount of food piled up
that needs to be taken into the hill could decide to switch
and function as a worker until the transportation of the
food is completed. Similarly, agents within the swarm are
able to switch between offense and defense as needed.

The switching behavior of ants can be modeled as a
threshold function and the swarms in this simulation use a
similar model. The threshold functions determine the
percent chance that an agent will decide to switch based on
the input of an environmental variable. In this case,
switching is partially determined by the number of units in
the same state versus the units in a different state. Again,
the agents are only aware of local information, so the
switching sensors have a limited range as well. Each
function is defined by a single variable, the threshold. At
the threshold value, the output of the function is 50%. If
the input is less than that value, then the agent will most
likely not take any action. As the value increases above the
threshold, the agent will be more inclined to switch states,
if the conditions are right. To prevent the swarm from
making the mistake of ignoring enemy units, agents are
only allowed to switch when there are no enemy units or
projectiles nearby. While there is a chance that an agent
can oscillate between states, that chance is minimal
enough to ignore in this simulation.

In addition to sensing the number and state of nearby
units, we utilize a “smart” base. While the central base is
not a part of the swarm, we allow the base to interact to a
small extent with the nearby agents. The base counts up
the number of nearby defenders and broadcasts that
number to nearby agents. Agents within range are then
able to make decisions on whether or not to switch based
on the information given by the base. This was necessary
because, in some cases, agents would think the base was
unguarded when, in fact, it was, but the defenders were out
of range on the other side of the base. Agents are able to
decide for themselves when the number of defenders is
either too large or too small. The base is not actually

making any decisions by itself. Instead, it is passively
sending the information for the agents to process.

B. Recruitment

In addition to deciding when to switch states, the
agents also needed the ability to recruit units in order to
form attacking groups. To draw another comparison to ant
colonies, when ants have trouble moving large objects,
their first method of recruitment is to release a large
amount of pheromone within a local area. If that does not
attract enough ants, the ant will return to the anthill leaving
a trail of pheromone behind. For our simulation, the
pheromone trail method does not work well with our
application, so we decided to implement only the first
method. Agents are able to sense which other nearby
agents are asking for help and respond according to some
preset rules.

Within the attackers’ task, there are two sub-states:
recruiters and scouts. All attackers are initially scouts. The
state switching within the attacker objective is controlled
via some preset rules. When a scout finds an enemy, it
becomes a recruiter. When defenders or other recruiters
find a recruiter and determine that they are in a safe
position, they become scouts. The goal is for recruiters to
search for other agents until a large enough group
surrounds the recruiter so that the enemy unit can be
destroyed by the group. Another rule was introduced that
allowed units that returned to the enemy’s location but
could not see the enemy to switch back to scouts and
continue searching. In this scenario the enemy may have
either drifted away or been destroyed by another group of
agents. In either case, the agents should move on instead
of getting stuck in a location that may not be important.
While the recruitment itself is not an adjustable parameter,
the movement of the units within the recruitment sub-
states is adjustable. Scouts need to learn to follow
recruiters and recruiters need to learn the optimal size of
groups needed. In this simulation, three agents are needed
to destroy the enemies.

IV. EVOLUTION PROCESS

For the evolution of the swarms’ parameters, we
looked at a variety of evolutionary strategies
[4][5][7][9][10][11]. After some experimentation, we
selected a method similar to that used in David Fogel’s
Blondie24 program [2]. At the beginning of the
evolutionary process, a population of teams is generated.
Each team contains a set of weighting functions and
threshold functions that define the rules followed by the
team’s swarm. For this experiment, a population of 50
teams was used.

During each round, each team plays a set number of
games. After the simulations are completed, each team
receives a fitness score that represents how well the swarm
performed during the simulations. It is often difficult to
determine a fitness function that rewards both good
defensive and offensive strategies. In order to encourage
the swarms to learn to defend the base as long as possible,
points are awarded to the teams based on how long the
base survived. This point total is then modified by
multiplying the percentage of active units that remain in
the playing area at the end of the simulation. This

encourages swarms to learn to stay within the playing area
without actually setting a hard boundary. The fitness
scores are also adjusted by adding bonuses for
conservation of movement.

Then, using a lexicographical sorting method, the

teams are selected based on the number of games in which
they accomplished certain objectives. After the teams are
sorted by fitness, they are sorted based on the number of
games where they find at least one enemy. This rewards
teams that successfully complete the search objective of
the attackers. Finally, the teams are sorted based on
successfully destroying enemies, which indicates a
completion of the second attacker objective, destroy. At
this point, the worst 25 teams (half of the overall
population) are removed from the evolution process and
the best 25 teams are duplicated.

The new 25 teams are mutated by adding random
Gaussian noise to the weights that control the swarms’
behavior. This process allows the evolutionary algorithm
to remove poor solutions and keep successful solutions,
while constantly searching for new and improved
strategies that are both similar to previous good solutions
and different enough that the search is considering new
strategies. The mutation step size is an important
parameter in the evolutionary program. If the step size is
too small, then the program will not be able to effectively
search through the entire search space. On the other hand,
if the step size is too large, then the search will not be able
to converge to a solution. In order to prevent the search
from converging too quickly, a minimum step size was
used. The minimum step size was calculated by first
calculating the average step size for each weight over all
of the teams tested. After a list of the average step sizes
was calculated, the minimum step size was found by
selecting the median of the average step sizes using the
method described by Liang et al. [8].

V. RESULTS

After the evolutionary algorithm was run for several
hundred generations of teams, the resulting strategies
allowed the swarms to perform well in both the defense of
the base and the searching for and destruction of enemy
units. The improvement of the fitness scores over the
course of the evolution process is shown in Figure 1. The

learning algorithm allows the swarms’ fitness scores to
increase over time, before leveling out at a maximum
value given the parameters of the simulation.

One of the more basic behaviors learned was the

division of labor. A swarm was able to divide itself up into
two groups, with roughly two thirds going into attack
mode and the remaining acting as defenders. This
emergent behavior was intuitive given that attackers had
more of a search area to cover, while only a small amount
of defenders were needed to guard the base. After the
initial division of labor, the swarm was able to
dynamically shift its resources autonomously. As
defenders are depleted through either enemy projectiles or
recruitment, they are replenished by nearby attackers that
switch states when they determine the number of
defenders is too small. Figures 2 and 3 demonstrate the
dynamic state switching behaviors learned by the swarms.

The attackers learned to spread out both from the base

and from each other. The scouts also learned an optimal
distance at which to turn on their center sensor to allow

Figure 3. This function represents the way the agents process the
information broadcast from the base. The base will broadcast the
number of defenders around it and the agent has the option of
switching to a defensive mode if it decides there are not enough
defenders around it. In this case, the swarm will attempt to keep at
least 8 or so defenders around the base. If the number of defenders
is less than that, then nearby attackers will most likely switch to a
defensive mode. Here, the base has broadcast that there are 6
defenders around it. A red scout has heard the message and decided
that 6 defenders is not enough, so it chooses to switch states to
become a blue defender. (For a video of this swarm, see
http://NeoSwarm.com/videos.html.)

Figure 2. The threshold function shown here demonstrated the
ability for agents to switch states if they decide there are too many
units working on their task and are “bored”. First, the agent counts
up the number of nearby agents working on its task and those
working on a different task. This is fed into the threshold function,
which determines the chance that the agent will switch. In this
case, if the difference between nearby defenders and attackers is 3,
then the agent has a 50% chance of switching to offense. If the
number of defenders compared to attackers is large, the agent will
most likely switch, and vice versa. In this image, a blue defending
agent has decided that there are too many defenders around it and
chooses to switch states to become a red scout. (For a video of this
swarm, see http://NeoSwarm.com/videos.html.)

Figure 1. This figure represents the learning process of the
evolutionary algorithm by showing how the fitness scores
improved over time. After 300 generations, the algorithm
converges to an optimal solution.

them to both remain in the playing area and search as
much of the map as possible. The defenders also learned to
surround the base while maintaining a set distance from
each other. They learned to keep their distance because
detonations to destroy enemy projectiles could destroy
friendly units if they were too close.

One of the more unexpected results came from the

optimization of the center sensor. The goal was for the
swarm to learn to stay within the boundaries of the playing
area. An interesting emergent behavior was that the
recruiters’ center sensor turned on at a very small value.
This caused all recruiters to be drawn back to a tight radius
around the base, which resulted in an effective recruitment
strategy as there is always a group of agents close to the
base. These recruiting techniques are shown in Figures 4
and 5.

One of the benefits of swarm intelligence is graceful
degradation of the swarm’s performance. As the
simulation progresses, the swarm will incur losses.
However, by dynamically shifting its resources, the swarm
is able to maintain both tasks, defending the base while
still searching for enemy units. It is only when the swarm
loses a large percentage of its population that the swarm
begins to break down and is no longer able to successfully
work on both objectives. The swarms in this project were
evolved with an initial population size of 40 units. This
number allowed the group of units to be large enough to be
considered a swarm while still being small enough to
encourage unique, emergent behavior. The concept of how
large a swarm needs to be in order to be considered a
swarm is a fuzzy one and often depends on the application.
The question of how size affects a swarm’s performance
will be explored further in future work.

VI. CONCLUSION

One of the advantages of swarm intelligence is a
swarm’s ability to autonomously reorganize itself in a
dynamic environment. In our work, we have used
techniques found in nature to allow a swarm to manifest
this behavior in a simulation where the swarm is required
to perform well in two objectives. The swarm has to both
defend a friendly target, while also finding and destroying
enemy units. By using an evolutionary learning algorithm,
the weighting functions that defined the swarms’ behavior
were optimized to be successful in both the offensive and
defensive objectives. We believe that these concepts can
be expanded upon in future work. One topic to consider is
the effect of size on a swarm’s performance. For the
purposes of these simulations, a population size of 40 was
chosen because it is small enough to be feasible in a real-
world application but also large enough to demonstrate
swarm characteristics. A more in depth exploration of the
effects of population size could provide more insight as to
when a large group of agents begins functioning as a
swarm.

In conclusion, this paper has demonstrated the

application of a multi-state swarm that was able to use
state-switching capabilities to adapt to a dynamically
changing environment. While previous work has shown
swarm intelligence as a viable solution to single objective
missions, we have expanded these swarm techniques to
accomplish multiple objectives using threshold functions
to control the switching between states. The emergent
behaviors of the swarms are robust and allow the swarm to
continue achieving its objectives until a large percentage
of its population is lost.

Figure 5. Here, a red scout has found an enemy unit and
switched states to become a maroon recruiter. The recruiter is
headed back toward the base in order to recruit other agents to
form a group large enough to take out the enemy. This image
shows the recruiter being joined by a third agent, which was
formerly a blue defender. Since the recruiter senses that its
group is at least three agents and is big enough to destroy the
enemy, the recruiter turns and begins leading the group to the
enemy unit to attack it. After the enemy is destroyed, any
remaining agents from the group will continue searching in a
scout mode. (For a video of this swarm, see
http://NeoSwarm.com/videos.html.)

Figure 4. The first function shows the center sensor for recruiters.
Note the scale for the x-axis. Any recruiters that are more than 1
unit away from the base will be inclined to return to the base. In
other words, all recruiters return to the base. It is easy to
understand why this unexpected strategy developed because there
are (or should always be) agents acting as defenders near the base
that can be recruited to join recruiters’ groups. This second graph
demonstrates another part of the recruitment method learned. It
represents how the agent moves with respect to the found enemy
based on the number of friendly agents around it. If there are no
friendly units around, the agent is repelled from the enemy; it is not
strong enough. If there is one unit around the recruiter, then it still
does not return to the enemy. Only when there are at least two
friendly agents nearby does the recruiter return to the enemy. At
this point, the group is at least three agents strong and able to
destroy an enemy unit.

ACKNOWLEDGMENT

Special thanks to Baylor University, the Pennsylvania
State University Applied Research Laboratory, and
especially the Office of Naval Research’s University
Laboratory Initiative for funding for this effort.

REFERENCES
[1] E. Bonabeau et al, Swarm Intelligence: From Natural to Artificial

Systems. Oxford, NY: Oxford University Press, 1999.

[2] D. Fogel, Blondie24. San Francisco, CA: Morgan Kaufmann
Publishers, 2002.

[3] I. Gravagne and R. Marks II, “Emergent Behaviors of Protector,
Refugee, and Aggressor Swarms,”IEEE Transactions on Systems,
Man, and Cybernetics – Part B: Cybernetics, vol. 37, no. 2,
pp.471-476, Apr, 2007.

[4] Z. Yuan, “Continuous Optimization algorithms for tuning real and
integer parameters of swarm intelligence algorithms,” ANTS 2010,
pp. 203-214, 2010.

[5] M. Clerc and J. Kennedy, “The Particle Swarm – Explosion,
Stability, and Convergence in a Multidimensional Complex
Space,” IEEE Transactions on Evolutionary Computation, vol. 6,
no. 1, pp. 58-73, Feb, 2002.

[6] W. Ewert, R.J. Marks II, B.B. Thompson & Albert Yu,
“Evolutionary Inversion of Swarm Emergence Using Disjunctive
Combs Control,” IEEE Transactions on Systems, Man &
Cybernetics, (prepint available at IEEE Xplore February 1, 2013.)

[7] D. Cvetkovic and I. Parmee, “Evolutionary Design and Multi-
ojbective Optimisation,” Plymouth Engineering Design Centre,
University of Plymouth. Drake Circus, Plymouth PL4 8AA, U.K.

[8] K. Liang et al, “Dynamic Control of Adaptive Parameters in
Evolutionary Programming,” Computational Intelligence Group,
School of Computer Science. University College, The University
of New South Wales. Australian Defence Force Academy,
Canberra. ACT, Australia 2600.

[9] C. Fonseca and P. Fleming, “An Overview of Evolutionary
Algorithms in Multiobjective Optimization,” Dept. Automatic
Control and Systems Eng. University of Sheffield, Sheffield S1
4DU. U.K. July, 1994.

[10] F. Kursawe, “A Variant of Evolution Strategies for Vector
Optimization,” University of Dortmund, Department of Computer
Science XI, D 44221 Dortmund, Germany.

[11] S. Carlson, “A General Method for Handling Constraints in
Genetic Algorithms,” University of Virginia, Charlottesville, VA.

