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ABSTRACT

We present an inverse technique to determine particle
size distributions by training a layered perceptron neural
network with optical backscattering measurements at three
wavelengths. An advantage of this approach is that, once the
neural network is trained, the inverse problem of obtaining
size distributions can be solved speedily and efficiently.

INTRODUCTION

We consider the inverse problem of finding the parti-
cle size distribution from the measurements of backscattered
light on an optically thin medium containing particles. The
first-order scattering approximation is used. The measured
quantity is the backscattered intensity B();) at three dif-
ferent wavelengths X;(i=1,2,3), and it is related to the size
distribution function n(r) by a Fredholm integral equation
of the first kind as

B(N) = / K\, m, r)n(r)dr, 1)

where m is the particle refractive index, r is the radius of
particle and K(A;,m,r) is the backscattering cross section
[1]. We assume that the particles are spherical so that the
backscattering cross section can be computed by the Mie
solution. The inversion problem is to find the distribution,
n(r), from B();) measurements.

Previously, methods such as smoothing, statistical and
Backus-Gilbert inversion techniques have been used in find-
ing profiles of particle distributions [2-5]. The smoothing
technique requires a judicious choice of two parameters which
control the smoothness of the solution. Statistical inversion
technique requires the knowledge of statistical properties of
the unknown function and the measurement errors. The
Backus-Gilbert technique, however, requires a good compro-
mise between the spread and the variance.

In this paper, we utilize a layered perceptron neural net-
work to determine particle size distributions [6]. A multi-
layer perceptron neural network trained with the backprop-
agation algorithm is used. A major advantage of this ap-
proach is that, once the neural network is trained, the inverse
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problem of estimating size distributions can be performed
speedily and efficiently.

MULTI-LAYER PERCEPTRON TYPE
ARTIFICIAL NEURAL NETWORK

An artificial neural network can be defined as a highly
connected array of elementary processors called neurons. In
this paper, we consider the multi-layer perceptron (MLP)
type artificial neural network [7-9].

As shown in Fig. 1, the MLP type neural network con-
sists of one input layer, one or more hidden layers and one
output layer. Each layer employs several neurons and each
neuron in the same layer is connected to the neurons in
the adjacent layer with different weights. A schematic di-
agram of this model is depicted in Fig. 1. We use 3 inputs
(B(M), B(X2), B(X3)) and 2 outputs (rm, o) neurons. Signals
pass from the input layer, through the hidden layers, to the
output layer. Except for the input layer, each neuron re-
ceives a signal which is a linearly weighted sum of all the
outputs from the neurons of the former layer. The neuron
then produces its output signal by passing the summed sig-
nal through the sigmoid function 1/(1 + ¢7%).

The backpropagation learning algorithm is employed for
training the neural network. Basically this algorithm uses
the gradient descent algorithm to get the best estimates of
the interconnected weights, and to make the output of the
network as close to the desired value as possible for the given
input. More detailed descriptions on the backpropagation
algorithm can be found in [10] and [11].

LOG-NORMAL SIZE DISTRIBUTION

We consider the backscattering of light from a volume
distribution of spherical particles with 31 radii ranging from
0.01 to 40pm. We assume that the size distribution function
n(r) is governed by the log-normal function so that it is
characterized by two quantities: the mean radius r,, and the
standard deviation o. Therefore, it is given by

n(r)r =

dN@ N[ [log(r) — log(r))?
dlogr ~ /2rlog(c) p{ 2[log(o)}? } @
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Thus the relation between B();) and the parameters ry, and
o is nonlinear. The inverse problem becomes that of finding
the output r,, and o for given input B();).

We first conduct a study of forward problem of finding
B(X;) for various r,, and 0. Since the radius of particles varies
from 0.01 to 40pm, i.e., —2 < log(r) < 1.66, the ranges for rm
and o are chosen such that —1 < log(ry,) < 0.44, and 0.03 <
log(¢) < 1. Thus the actual size of particles ranging from
(rm/0) to ro will be within the range for r. Both log(rm)
and log(c) are divided into 10 intervals for generating the
training and testing data. We chose the refractive index of
the particle to be m = 1.53 — j0.008 and, the wavelengths to
be A; = 0.53um, A; = 1.06pm and A3 = 2.12um. The study
of B(X;) reveals that for some values of log(rm) and log(o),
they are close to each other. This may create a problem
of getting nonunique solution for ry, and ¢ with such B(X).
In order to obtain unique solution of r, and & for given
B();), the change in B();) for given change of r, and o must
be sufficiently large. Therefore we define the distance D, a
measure of separation of A(\;), as

D= \'2_: (B(Mi, 75 mt) = BNi, O, T (3)

Here we have divided log(r,,) and log(c) into a number of
intervals such that

0.03 = log(oy) < log(oz) < ... <log(om) =1,
and
—1 = log(rm1) < log(rma) < ... < log(rmn) = 0.44.

In order to ensure the B();)’s are sufficiently separated,
we require that D exceeds a minimum distance Dy,. To find
D, we first notice that there is a large difference in magni-
tude between B(A;, 05, 7mi) and B(Ai, ok, Tmi) for k > j. For
instance we have B()\i, 01, m1) ~ 107° and B(Ai, oM, Tm1) ~
10~8. Thus D,, cannot be fixed for all ¢; but should vary
according to o;. In addition, for the same g}, the value for
B(Xi,0j, i) increases from Il =1to!l = N. The lowest
value occurs when [ = 1. Hence, the minimum distance Dy,
is chosen proportional to S();) obtained from the first mean
radius rp,;. Specifically

m = D1y/B2(M, 05, 7mn) + B2, 05, Tma) + B2(Aa, 5, Ta) (4)

where D; is a constant. Thus Dy, is a fixed quantity when
D, and o; are fixed. Therefore, we can determine the allow-
able range of log(rm) for that particular log(o;), the lower
and upper bounds of log(rm), by enforcing the requirement
of D > D,,. Similary for each log(c;),j = 1,2,..., we com-
pute the corresponding allowable ranges of log(rm). From
the diagram of all the allowable ranges for log(r), we can
~stimate the desired region for log(r) and log(c).

—

RESULTS AND DISCUSSIONS

The constant D, in (4) controls the size of the allowable
region for log(rm) and log(c). A large value of Dy will gen-
erally create a small allowable region, but the values of B(X\)
are reasonably separated and therefore unique sets of 5(};)
can be obtained. On the other hand, a small value of D,
will create a large allowable region, but the sets of 5();) are
close to each other. Unique sets of A(\;) are thus difficult
to obtain resulting in a large percentage of error in obtain-
ing the unknown size distribution. A value of D, ranging
from 0.1 to 50 has been tested in finding the suitable D;.
It is found that a value of 10 for D, is a good compromise
between the percentage error and the size of the allowable
region for log(rm) and log(c). With such a value, the al-
lowable region is found to be —0.328 < log(r,,) < 0.44 and
0.03 < log(c) < 0.5 as shown in Fig. 2.
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Figure 1  Structure of a multi-layered perceptron type ar-
tificial neural network.
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Figure 2 Region of the allowable log(r,,) and log(o) for
D, =10.
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Based on the allowable region discussed above, a group of
480 sets of data was generated from (1). In order to maximize
the computing accuracy of the neural network, all the data
are first normalized from zero to unity. We use 462 data sets
to trained the neural network. The remaining 18 sets are
used to test the system. Finally, as shown in Figs. 3 to 6,
the results are converted back to the original values.

Figures 3 and 5 show the performance of the neural net-
work in obtaining the size distribution function n(r) by com-
puting the desired output log(r,,) and log(c) for each testing
data set. The solid line is the line of the true value that the
computed results should be as close to it as possible. In the
process of training the neural network, different number of
iterations are used. It is shown in Figs. 3 and 5 that increas-
ing number of iterations tends to converge to the true values.
Figures 4 and 6 show the performance of neural network in
terms of absolute percentage error for log(r,,) and log(o),
respectively. Again, it is clear from Figs. 4 and 6 that in-
creasing number of iterations tends to converge to the real
value and hence lowers the absolute percentage errors. Ex-
cept that the desired output log(r,,) and log(c) are small,
the neural network yields good results for most of the testing
data with the absolute percentage of error less than 10%.

CONCLUSION

In this paper, we present an inverse technique of find-
ing particle size distribution by using neural network. Size
distribution function is assumed to be a log-normal func-
tion so that it is characterized by the mean radius r,, and
standard deviation . We first train the neural network by
inputting the backscattered intensities A()\;),z = 1,2,3, at
three wavelengths with known particle refractive index, r,,
and o. A group of 462 data sets is used to train the neural
network. Another group of 18 data sets is used to test the
neural network in obtaining the desired output r,, and o.
It is shown that the neural network yields good results for
the testing data with absolute percentage of errors less than
10% for most of the testing input #(};). A major advantage
of this technique is that, once the neural network is trained,
the inverse problem of obtaining the size distributions can
be solved speedily and efficiently.
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Figure 3 Performance of the neural network in generating
the mean particle size, log(r,, ), from the given backscattered
intensities, A(A;). The solid line is the line of true value that
the computed results should be as close to it as possible. A
different number of iterations was used to train the neural
network.
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Figure 4 Performance of the neural network in generating

the mean particle size, log(r,, ), from the given backscattered
intensities, B(J;), in terms of absolute percentage error. In-
creasing number of iterations tends to converge to the true
value and hence lowers the absolute percentage error.
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I'igure 5 Performance of the neural network in generat-

ing the standard deviation of particle size, log(c), from the
given backscattered intensities, ();). The solid line is the
line of true value that the computed results should be as
close to it as possible. A different number of iterations was
used to train the neural network.
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Figure 6 Performance of the neural network in generat-
ing the standard deviation of particle size, log(c), from the
given backscattered intensities, 8();), in terms of absolute
percentage error. Increasing number of iterations tends to
converge to the true value and hence lowers the absolute
percentage error.



