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Abstract

Mobile Communications dictates the use of low
power detection and estimation algorithms to prolong
the battery life. In this paper, we present a very low
power detection scheme and evaluate its performance.
This scheme can be used instead of the optimal quan-
tized detectors when the noise variance, or other prob-
lem parameters, are unknown or change online. Our
detector uses an adaeptive Discrete Time Stochastic
Resonator that consists of a simple Schmitt trigger.
Theoretical results evaluating the detection capability of
such a device are presented, and simulations show im-
provement in detection probability over other low power
schemes.

1. Introduction

Wireless applications are driving the development of
low power algorithms, for the sake of saving the bat-
tery power. Here, we propose using a very low power
detection algorithm that relies on one-bit quantization
of the observations using stochastic resonance.

Stochastic Resonance (SR) was initially used to de-
scribe certain physical phenomena, such as the earth’s
climatic change [1]. Recently, it has been gaining in-
creasing interest as a potential signal processing tool.
Despite claims that it outperforms the optimal matched
filter [2], and results to the contrary showing it de-
creases processing gain [3], there is still a lack in ap-
plications that can utilize some appealing characteris-
tics of SR. SR is essentially a nonlinear device which
encounters increase in the output SNR with increasing
noise [4], and the output SNR reaches a peak, resonates
at a certain input noise level.

Fig. 1 shows a very simple stochastic resonator, a
Schmitt trigger [5]. This device can be modeled as a
Markov chain with 2 states, and the probabilities of
transition can be easily calculated [6]. In this paper
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we show how to use a Discrete Time Stochastic Res-
onator (DTSR) to achieve low power detection. In the
next section we introduce the DTSR using a simple
Schmitt trigger. We show how to employ such a de-
vice in detection problems, and how to calculate its
error probability. We also present modified adaptive
architectures for the DTSR to enhance its detection
capabilities. Next, we show how to employ that DTSR
in low power detection schemes. An optimum detec-
tion receiver, in the case of Gaussian white noise is the
matched filter. The matched filter can be implemented
as a single filter, or can implemented as two filters, a
decimation filter followed by a downsampler and then
a shorter matched filter working at a lower rate. We
discuss an approach for replacing the full complexity
matched filter by a properly designed adaptive DTSR.
To make use of the 1/f roll off in the noise spectrum
at the output of the DTSR, we also propose a detector
that uses ana adaptive DTSR as the decimation filter,
following that with a shorter matched filter. We then
present the conclusion.

2 Discrete Time Stochastic Resonance
2.1 Theory

Fig. 1 shows a very simple stochastic resonator, a
Schmitt trigger [5]. In this figure, s(n) is the input
signal to the DTSR, g(n) is the feedback factor of the
Schmitt trigger, and z(n) is the output of the DTSR,
all at time instance n. This device can be modeled as
a 2-state Markov chain, with transition matrix given
by:

A= 1-a(n) «aln)

L B(n) 1-B(n)
where  a(n)=Prob.(g(n) + s(n) < 0),
B(n)=Prob.(—g(n) + s(n) > 0). In the case of
time invariant probability distribution of s(n) and
constant feedback factor g(n) = g the state probabili-
ties converge to their steady states which can be easily
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derived [6].

Consider the binary hypotheses:
HO :r(n) = s(n) + w(n)
H1 v % n) = —s(n) + w(n)
where r(n) is the received sequence, s(n) is a signal
sequence, and w(n) is a white Gaussian noise sequence.
Assume that the apriori probabilities of H0 and H1 are
equal, and use a minimum probability of error criterion.
Minimizing this probability entails choosing the one of
the two hypotheses with the higher likelihood function,
that is with the higher Prob.(R|{H) where R is the
output sequence from the device.

The output of this device is discrete, and, if the num-
ber of observations is IV, the possible outputs are finite
in number and equal to 2&V. Therefore we can calcu-
late the theoretical error performance of our DTSR by
calculating the likelihood of all the possible output se-
quences of £1’s under both hypothesis, and calculating
the probabilities of a miss and that of a false alarm.

Using a likelihood function for our decision here is
fairly expensive computationally but it presents an up-
per  bound on the performance of our device. Fig.
2 shows the detection probability of a discrete time
Schmitt trigger driven using 1 to 18 observations of
one of the two previous hypotheses where s(n) = s = .8
and w(n) has a standard deviation of 0.5. The feed-
back factor g(n) is chosen to be a constant and equal
to 1. The same figure shows the detection probability
of a matched filter. It is clear that the matched filter
outperforms the SR using any number of observations,
excluding the trivial case of one observation. An ad-
vantage of the DTSR is that it uses less power than
the matched filter, and hence, in this paper we exploit
that characteristic.

2.2. Adaptive DTSR

Adapting the parameters of a SR device can enhance
the performance by causing the SR to resonate at the
operating noise level [7]. Therefore we might expect
better results if there was an algorithm to optimally
adapt g(n). Such algorithms exist in the theory of Fi-
nite Memory detection and decentralized detection[8].
These algorithms require knowledge of the noise vari-
ance, and are fairly complex to optimize. Thus, if the
noise variance is unknown, or is changing, we cannot
apply such algorithms. Here we present a heuristic ap-
proach for such adaptation. Fig. 3 shows the detection
probability when

n—1
g(n) = g(0) +p | > y() | (1)

i=1

beginning with g(0) = 0. A motivation for this is that
n—1
if | > y(9) | is high, the probability of one of the

=1
two hypothesis is higher than the other, thus we can
increase the feedback factor given we started from a
low feedback factor. This adaptive scheme conforms
with the increase and decrease in the optimal thresh-
olds, when these are specified based on all the previous
observations. In cases of known signal amplitude, noise
variance and number of observations, we will present
techniques for obtaining the optimum g later in the

paper.
3. Optimum One Bit Detection

The results in Fig. 2 were derived assuming a con-
stant feedback factor g(n) = 1. If the signal ampli-
tude and the noise variance are known, we can obtain
optimal feedback gains. If we keep the feedback gain
constant, we get a time invariant one-bit detector. In
that case, assume that the optimum g(n) = M. There-
fore, we, optimally, compare with —M if the previous
output is 1 and with M if the previous output is -1,
where M can be shown to be greater than zero. M is
a function of the signal amplitude, the noise variance
and the number of observations.

In Finite Memory detection, the detection decision
is based solely on the final quantized output, while in
decentralized detection, or general quantized detection,
the final decision is allowed to be any function of all the
quantized observations. If the number of observation is
large, the optimization techniques for obtaining the op-
timal quantization thresholds at each observation be-
come computationally prohibitive, as these techniques
depended on enumerating all the possible outputs. In
many of the papers on decentralized detection, simula-
tion results are provided for 2 or 3 observations only.
Here, we will present new techniques for obtaining the
optimal feedback in several cases of interest. We will
relax the condition that the feedback is a multiplicative
function of the output bit, and allow it to be a general
function. We will also allow the feedback to depend on
a specified number of previous outputs instead of just
the latest output.

3.1. Case 1: DC Signals

In this section, we discuss adapting the feedback
value based on the sum of the previous outputs. This
is motivated by the fact that, for the sake of lower com-
plexity, our detection decision will be a function of the
sum of those outputs. Otherwise, we might need a large
look up table, or have to perform some multiplications
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operations. Notice that if s(n) is not constant, sum-
ming the outputs may not yield good results. There-
fore, here we limit our attention to only DC signals.
We will later show how this can be extended to time
varying signals such as sinusoidal signals.

n-—1
Let our feedback g(n) be g(n) = p| 3 y(i) |- We
i=1

want to obtain the optimum g that gives the minimum
probability of error. We have the same hypothesis de-
fined before, and we decide HO if the final sum of the
outputs is positive, and decide H1 otherwise. We can
obtain the optimal y by enumerating all the possible
outputs for our IV observations. We can then calculate
the probability of each one of them, given HO for in-
stance, using our Markov chain model. We then sum
these probabilities for those sequences that will make
us decide H1. This sum will be the probability of error
given HO. We repeat for H1. Notice that in the case
of even N, we will have to randomly decide on one of
the hypothesis with probability 0.5 when the sum of
the outputs is zero. In cases of large N, enumerating
all the possible 2%V outputs might be computationally
prohibitive, and so we propose another technique for
optimization. We redefine our Markov state to be the
current output of the DTSR and the current sum of
the all the previous outputs. Since the sum can be any
where from —N to N, we have 2 % (2N + 1) possible
states. We can calculate the probability of transition
from one state to another, noting that only few transi-
tions are possible: a transition is allowed only from a
state to another state if the difference in the value of
the sum in the two states is &1 and the output in the
next state corresponds to that difference. We can then
sum the probability of the final states that correspond
to negative sums to calculate the probability of error
given HO, and those corresponding to positive sums
for the probability of error given H1. Fig. 4 shows the
optimum g with the number of observations at s = .8
and o = .5. The optimal p was evaluated numerically.
An interesting observation is that the optimum p is
zero when the number of observations is odd. We tried
several other s and o, and this observation still holds
true. Unfortunately, a closed form expression for the
derivative of the probability of error is difficult to ob-
tain, and hence a rigorous proof of that observation is
currently unavailable.

3.2. Case 2: General Input Signals

We allow the feedback to be a function of previous
k outputs. Using different feedbacks is equivalent to
using quantizers with different thresholds. Therefore,
our quantizer is

Q)=1ifz>g;

RQz)=-1ifz<g;

where g; is the feedback in state 4,1 < 7 < 2%, and z is
s+w.

We base our detection decision either on the final
output, or allow it to be a function of all the outputs.
If our decision is only based on the final output, this is
equivalent to a 1-bit Finite memory detection, and we
can calculate the probability of error as the probability
of the final state of a 2-state Markov chain being a —1
given HO added to its probability being a 1 given H1.
This can be done for both DC and arbitrary signal se-
quences, with the difference that the transition matrix
in the DC case is time invariant, while in the arbitrary
signal case, it varies with time. If the detection decision
is based on all the outputs, we have 2 cases to consider.
In the DC case, we can make this function the sum of
all the outputs as we have done before. Here we model
our system as a 2% x (2N + 1) state Markov chain. No-
tice that in the case of Finite memory detection, it can
be proven that if you have k bits, the optimal detector
is achieved by giving them to the previous observation,
i.e. have a 2* state quantizer. But since our objective
is low power detection, giving a bit to each of the pre-
vious k observations achieves lower power, as you only
compare the current observation with a single thresh-
old as opposed to k thresholds in the Finite memory
case. Fig. 5 compares between basing our decision on
the final output or basing it on all the outputs instead,
when k = 1.

For arbitrary signal sequences, we can base our de-
cision on the result of a matched filtering operation on
the outputs of the DTSR. In that case, to obtain the
optimal feedback gain, we have to enumerate all the
possible 2V outputs. Again, this might be computa-
tionally prohibitive for large N. If we want to achieve
even lower power, and at the same time be able to opti-
mize, we can decide to sum the outputs. In order to do
s0, we have to use different quantizers when the signal
sequence s(n) changes signs. Therefore, at observation
n, we will use the quantizer @,, such that if s(n) > 0,
Qu(z) =1ifz > g;, and if if s(n) < 0, Qp(z) =1
if z < g;. Another choice is to use the quantizer @y,
such that if s(n) > 0, Qn(z) = 1if z > g;, and if if
s(n) < 0, Qu(z) = 1if z < —g;. Fig. 6 compares
between the probability of error obtained using these
two techniques, and matched filtering the output of the
DTSR. Here s(n) = .8+ cos(w xn), where n = 1,2, ..10,
w = 2x*7/10.
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Figure 1. Schmitt Trigger: A Discrete Time
Stochastic Resonator

Figure 2. Error Probability
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Figure 3. Probability of error for 10 outputs
of an adaptive discrete time Schmitt trigger
driven by a constant signal of 0.8 Volts cor-
rupted by a white Gaussian noise sequence
of standard deviation 0.5 volt
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Figure 4. Optimum Feedback for DC in Gaus-
sian Noise

Figure 5. Probability of Error when decision
is based on the final bit or on the sum of the
bits
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Figure 6. Probability of Error for a sine wave
in noise

Figure 7. Probability of Error for a sine wave
in noise when downsampling is used



3.3. Low Complexity Detection by Downsampling
DTSR Output

Let us now discuss one approach to low complex-
ity detection that relies on the spectral noise shaping
that can be achieved with a DTSR. In a normal detec-
tion scheme involving signals in white Gaussian noise,
assuming we have discrete observations, the complex-
ity of the detection algorithm is essentially that of the
matched filter. The number for multiplications and
additions of the matched filter is directly proportional
to the length of the input sequence, or the number of
observations. We may chose to downsample the in-
put sequence to reduce the computational complexity.
Saving in multiplications and additions will be propor-
tional to the downsampling rate. To maintain almost
the same detection performance level as with no down-
sampling, we have to use two filters. The first filter
is a decimation filter, which limits the bandwidth of
the noise, and the second filter is a matched filter with
length equal to the length of the data sequence divided
by the decimation ratio. Otherwise the wide band noise
would fold into the band of the signal and hence we get
lower SNR and consequently lower detection probabil-
ity. This decimation filter involves a number of multi-
plications and additions proportional to its length, and
hence we have a trade off between the length of our low
pass filter and the performance of our low power detec-
tor. An interesting feature of the SR output is that its
noise part has a 1/f spectrum [5]. Hence, downsam-
pling its output would have a lower effect of folding,
or aliasing than the original input which has a white
spectrum. Therefore we can save the first filter, the
decimation filter and replace it by a DTSR. The DTSR
has a very low computational complexity, as for every
sample we need only to compute a 1-bit comparison
and a 1-bit addition. This leads to a low complexity
detection algorithm: preprocess the input signal using
the DTSR and then downsample it. We now have a
shorter matched filter to be applied to our data. The
complexity added by the DTSR preprocessor is low,
since for every observation we only need to perform one
comparison. An added advantage is that the matched
filter now will have inputs of only +1, which alleviates
the need for multiplication in the matched filter.

We now find the optimal feedback factor g, when
the detection decision is based on downsampling the
output of the DTSR by a factor of R. The detection
decision will be based on the sum of the observations
mR, where m is an integer, 1 < m < %&. The feedback
factor, g, will depend on the previous k outputs. There-
fore, again, we have a 2%(2N + 1) state Markov chain,
but we have 2 kinds of the transition matrix: those at
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observations mR, and those at other observations. At
observations mR, state transitions are allowed to states
that differ in the value of the sum, while at other obser-
vations state transitions are allowed to only states with
the same sum value. Fig. 7 shows the probability of
error when s(n) = .8 x cos(w *n), where n = 1, 2,..100,
w = 2% 7w/100 and R = 10, for three different re-
ceivers: matched filtering the downsampled version of
s(n), matched filtering the downsampled version of the
output of the DTSR, and summing the downsampled
version of the output of the DTSR.

4. Conclusion

In this paper we presented a low power detection
scheme that can be applied to DC and general signals.
This technique relies on quantizing and/or downsam-
pling the observations. We also presented computa-
tionally feasible techniques to optimize the structures
we propose using in low power detection algorithms.
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