
Volume 2010 | Issue 3 | Page 1

Research Article

A Vivisection of the ev Computer Organism:
Identifying Sources of Active Information
George Montañez1, Winston Ewert1, William A. Dembski2, and Robert J. Marks II3*
1 Department of Computer Science, Baylor University, Waco, Texas, USA; 2 Discovery Institute, Seattle, Washington, USA; 3 Department of Electrical and Computer Engineering,
Baylor University, Waco, Texas, USA

Abstract

ev is an evolutionary search algorithm proposed to simulate biological evolution. As such, researchers have
claimed that it demonstrates that a blind, unguided search is able to generate new information. However, anal-
ysis shows that any non-trivial computer search needs to exploit one or more sources of knowledge to make
the search successful. Search algorithms mine active information from these resources, with some search algo-
rithms performing better than others. We illustrate these principles in the analysis of ev. The sources of knowl-
edge in ev include a Hamming oracle and a perceptron structure that predisposes the search towards its tar-
get. The original ev uses these resources in an evolutionary algorithm. Although the evolutionary algorithm
finds the target, we demonstrate a simple stochastic hill climbing algorithm uses the resources more efficiently.

Cite as: Montañez G, Ewert W, Dembski WA, Marks II RJ (2010) A vivisection of the ev computer organism: Identifying sources of active information. BIO-Complexity
2010(3):1-6. doi:10.5048/BIO-C.2010.3

Editor: Colin Reeves

Received: March 25, 2010; Accepted: August 27, 2010; Published: December 15, 2010

Copyright: © 2010 Montañez, Ewert, Dembski, and Marks. This open-access article is published under the terms of the Creative Commons Attribution
License, which permits free distribution and reuse in derivative works provided the original author(s) and source are credited.

Notes: A Critique of this paper, when available, will be assigned doi:10.5048/BIO-C.2010.3.c.

* Email: Robert_Marks@baylor.edu

INTRODUCTION
Computer algorithms can serve as powerful tools for modeling

and studying facets of nature, including biological phenomena. As
with all models, extrapolation from algorithm behavior to real-
world behavior requires that the algorithm be based on realistic
operating assumptions and produce behavior characteristic of the
system in question. Inaccuracies or hidden biases can invalidate
an algorithm as a model of natural phenomena. Modeling the
evolutionary process as an algorithmic search process, therefore,
requires diligence on our part to ensure that all algorithm assump-
tions are realistic and that no undisclosed knowledge sources are
used to ease the difficulty of our search.

Algorithms that conduct even moderately sized searches require
external assistance to be successful. When such an algorithm pro-
duces apparently impressive results, conservation of information
[1-3], including the No Free Lunch Theorem [4-11], dictates we
are faced with one of two possibilities. The first is that the search
problem under consideration is not as difficult as it first appears. At
times, the problems solved by seemingly complex algorithms can
appear extremely difficult whereas a closer inspection reveals the
search is relatively simple and, from a random query or exhaus-
tive search perspective, has a larger probability of success than
implicitly supposed. The other alternative, for difficult problems,
is that active information has been inserted in the search program
to increase the chances of success.1

1 Formally, active information is defined as -log2(p/q) where p is the probability of
success for an unassisted search and q is the probability of success for an assisted
search. Informally, it is the amount of information added to the search that improves
the probability of success over the baseline search.

A common source of active information is a software oracle2
[12-14]. When the oracle is the dominant computational compo-
nent in an evolutionary search and the cost of each query is the
same, the efficiency of a search algorithm can be measured in
query counts. Different search algorithms extract information with
varying efficiencies. A simple single agent algorithm that uses a
stochastic hill climbing ratchet [13], for example, is much more ef-
ficient than an evolutionary search using the oracle available in the
artificial life simulation AVIDA [15]. Active information can also
be extracted from a Hamming oracle.3 The effectiveness of this
oracle can range from that of a standard evolutionary search to a
deterministic frequency of occurrence Hamming oracle algorithm,
which can produce over an order of magnitude improvement [13].

This paper presents an analysis of the ev program, a search algo-
rithm that models the evolution of nucleotide binding sites [16]. The ev
algorithm has the form of a perceptron, consisting of a single artifi-
cial neuron using a simple threshold nonlinearity. Our purpose is to
analyze how ev’s search structure constrains performance in light
of conservation of information theorems for search algorithms. In
particular, we investigate the degree to which ev’s success is due
to active information introduced into the simulation by the struc-
ture of the perceptron used to generate potential solutions and the
Hamming oracle used to evaluate the fitness of the solution.

2 A software oracle is a software object that answers queries posed to it. In our case, a
software oracle is a function that takes in a configuration and returns a value denot-
ing the fitness of that configuration.

3 A Hamming oracle uses the Hamming distance (number of bits that differ from a
target sequence) as its fitness metric.

http://dx.doi.org/10.5048/BIO-C.2010.3
http://dx.doi.org/10.5048/BIO-C.2010.3.c
mailto:Robert_Marks@baylor.edu

Volume 2010 | Issue 3 | Page 2

A Vivisection of ev

ANALYSIS AND RESULTS

Information measures
We use the following information measures [1,2,13,17,18] to

assess the performance of a search:
Endogenous information is a measure of the difficulty of a
search and is given by

 (1)

where p is the probability of success for an unassisted query.
Exogenous information in a search program is given by

 (2)

where q is the probability of success of an assisted query un-
der the same set of constraints.
Active information is the difference between the endogenous
and exogenous information, denoted as4

 (3)

Each of the three information measures has units of bits. If the
knowledge about the space is not accurate or is otherwise mislead-
ing, the active information can be negative.

In addition, for any search algorithm, such as ev, a resource
constraint must be imposed. Otherwise, unlimited time and com-
puter resources would allow an exhaustive search. Let Q denote
the query count, Qmax the maximum allowable number of queries
before abandoning the search, and E the expectation [19]. Under
a query count constraint, the active information per query, I⊕, is

 (4)

I⊕ can be estimated by averaging the active information per
query over K trials of Qmax queries or less. For the kth trial, there
are two possibilities. Either success is achieved with Qk ≤ Qmax
queries, in which case the point estimate of I⊕ is IΩ ∕Qk, or if a suc-
cess is not achieved with Qmax queries, then the point estimates of
I+ and I⊕ both have a value of zero.

Thus, defining ςk such that ςk = 1 for a success in Qmax or fewer
queries, and ςk = 0 and Qk = Qmax for a failure, we can estimate I⊕
as the average over K trials.5 That is, I⊕ ≈ ⟨I⊕⟩ where

 (5)

This estimate, ⟨I⊕⟩, needs to be interpreted with the same cau-
tion as the average speed of an auto on a road trip. Instantaneous
values can be significantly higher or lower than the average.

4 The plus sign subscript on I+ represents information being added about the search.
5 A similar active information rate was used in the dissection of AVIDA [18] using an

instruction count rather than queries.

I pΩ = − log2

I qS : log= − 2

I I I p
qS+ = − = −: logΩ 2

I I
Q
+= Ε⊕

I
K

I
Q

I
K Q

k
kk

K

k

=

=

=

∑

∑

1

1

1

successes

⊕ ς

Ω

Ω)(

We refer to I⊕ / I
Ω
 as the normalized active information per

query, and the estimated normalized active information per query
is given by

 (6)

A similar measure6 is the active information per mean query,

 (7)

which we can estimate by

 (8)

where

 (9)

Analysis of endogenous information in ev
The ev search algorithm can be viewed as an inversion of a per-

ceptron7 [21-23]. This is illustrated in Figure 1 on the next page.
The ev simulation creates a population of 64 synthetic organisms,
each with a genome consisting of a 256 base string (excluding
five extra bases at the end that are not part of the genome proper),
with the bases stored as two-bit integers: A=00, C=01, G=10 and
T=11. There are, therefore, n = 256 nucleotides at the perceptron
output that serve as potential binding sites8 each with Γ = 4 pos-
sible bases. In this sequence, 16 of the 256 nucleotide site loca-
tions are designated as binding sites. The ev simulation begins
by randomly assigning these 16 binding sites within the second
half of the genome and fixes them for the duration of a run. The
sequence of ones (binding sites) and zeros (not a binding site) are
shown at the bottom of Figure 1. A published example [16] uses
the specific locations9

t = [, , , , , , , , , , , , , ,1 10 17 26 33 43 50 60 70 76 83 92 101 109 1117 125,] . (10)

There is also a Γ × λ weight matrix (see Figure 1) with Γλ = 24
elements that are represented as integers in the range of [-R, R-1]
where R = 512. Since 2R = 1024 = 45, five bases are needed to
give each weight its value. There is a single bias, θ, specified by
five bases and having the same range as the weight elements. The
perceptron works by sequentially processing the genome in blocks
of λ = 6 bases. As shown in Figure 1, each of the six columns are
activated at one of four locations (A, C, G or T) in accordance to
the nucleotide above. The weights of these activated locations are
summed. The bias, θ, is subtracted from this sum and the result
compared to a threshold. If positive, the location is announced as

6 From Jensen’s inequality [20], E
E

1 1
Q Q

 ≥ [] . Thus I⊕ ≥ I

⊞
.

7 This is a process by which we find a set of weights and bias that give us some
desired output behavior for our perceptron.

8 Although all 256 positions along the genome are evaluated for errors and contribute
to an organism’s fitness, the randomly placed binding sites are restricted to the
second half of the genome. In Figure 1 of reference 16, these correspond to bases
126 to 261. There are other nucleotides whose identities are interpreted as weights,
window values, or the bias in the construction of the perceptron. Five additional
bases are used at the end to accommodate a sliding window used in ev.

9 The target binding sites start at location 131 (zero-indexed) in the first Figure of
reference 16. Thus, location 10 here corresponds to nucleotide 141.

I
I K Qk

= ∑1 1
successes

⊕

Ω

I I
Q� = []
Ω

E

I I
Q� = Ω

Q
K

Q k= ∑1
successes

.

.

.

Volume 2010 | Issue 3 | Page 3

A Vivisection of ev

Figure 1. The perceptron structure of ev. The genome (top) has at each
position Γ = 4 binary locations, each corresponding to A, G, C and T. The
number one is inserted at the location corresponding to the base type,
and the number zero is inserted at each of the three remaining locations.
These are illustrated with white squares for ones and shaded squares for
zeros. The genome’s binary locations present binary (0,1)-inputs to the
perceptron (middle), illustrated by circles shaded like the squares above
them. The strip of the genome is shifted from right to left in unit increments
of time. At each point in time, the window of λ = 6 bases with binary inputs
is multiplied by weights, the resulting values are added, and the bias θ is
subtracted. The sum S is then compared to the threshold operator. If the
final sum is positive, the output is a one; otherwise it is a zero. Finally, the
output is compared to the target (bottom). If they are different, an error
is tallied. The genome sequence and the target sequence of (0,1)’s is
advanced one step, and the process is repeated for the next target bit.
doi:10.5048/BIO-C.2010.3.f1

a binding site. Otherwise, not. This value is compared to the target
value. The search problem is to have all of these values match
those of the target values, e.g. those in Equation 10. After the com-
plete genome is examined, the total number of places where the
perceptron output and the target differs is recorded. This is an ex-
clusive or (XOR) between the two bit strings, and the number of
differences between the two is the separating Hamming distance.
The Hamming distance tells us how well the perceptron is doing.
If the Hamming distance is zero, there is a perfect match and we
have found a genome that properly identifies the binding sites.

Analysis based on ev output. There are at least two ways to
analyze the search algorithm in ev. The accumulated error from
the XOR in Figure 1 is the response to a Hamming oracle for a
binary alphabet, which announces the total number of bits the tar-
get differs from the output. The Hamming oracle is a rich source
of active information [13]. Searching only from the perspective of
the output, the binary target can be identified with ⟨I⊕⟩ = one bit of
active information per query.

A simple approach to demonstrate this is as follows: Query with
an output of all ones and record the Hamming distance. Change
the first bit to zero. If the Hamming distance is larger, the first bit
is a one. If smaller, a zero. Repeat for all the bits. When the second
to last bit is identified, the final bit can be identified by matching
the Hamming distance measured first. This approach supplies one
bit of active information per query. There are other algorithms
that extract information from the Hamming oracle more efficiently
[13].

Analysis based on ev perceptron structure. The more interesting
case for analysis involves a search using the perceptron structure
and the organism’s genome, rather than modifying its output di-
rectly. In this case, we search for a sequence of nucleotides that
produces a weight matrix and bias that calculates a perceptron out-
put identical to the target.

In the search for the binding sites, the target sequences are fixed
at the beginning of the search. The weights, bias, and remaining
genome sequence are all allowed to vary. Finding them is a form
of the perceptron inversion problem [22]. A search space Ω con-
sists of all possible values of weights, genome sequence, and bias.
There are 256 nucleotide bases (A, C, G, T) used for each simula-
tion of ev. There are 5 additional bases used for a boundary con-
dition for a sliding window across some of the bases. Including
these bases, the search space is the 261 fold Cartesian product of
the (A, C, G, T) bases. Bases are interpreted in different ways in
the search:

1. As a nucleotide on the input strip at the top of Figure 1.
There are 256 + λ − 1 = 261 nucleotides in the input strip.

2. As a weight in the Γλ matrix. Each weight has 10 bits
(5 bases) of precision.

3. As the bias threshold θ. The bias also has 10 bits of accuracy.

Since there are four bases, the cardinality of the search space10 is

 (11)

Every point in Ω generates an XOR output of 256 bits. The
search target ΩT is the set of all points in Ω that generate the 256
bit target sequence at the output.

Performance analysis of the ev perceptron
We now analyze the source the active information provided by

ev’s perceptron structure. Denote the sum entered into the thresh-
old operator in Figure 1 by S. There are 256 values of S in the
output string. Let’s call the kth sum Sk and concatenate them into
the vector

 (12)

A given Sk is the sum of seven independent and identically dis-
tributed (i.i.d.) uniform discrete random variables. The random
variables in

�
S , though, are not independent. Each, for example,

contains the same bias, θ, as one of the seven numbers in its sum.
If the output bits were independent, every possible binary string
would have the same probability as any other and the same distri-
bution of error. According to the Laplace-DeMoivre theorem [19,
24], they would therefore be Gaussian as in Figure 2B. However,
the normalized histogram for ev in Figure 2A is far from Gaussian
(see below for a demonstration). If the bias is large, it can push

10 This number includes the five bases that are not searched.

Ω = = ×4 1 37 10261 157.

�
… …S S S S S Sk

T= []1 2 3 256

http://dx.doi.org/10.5048/BIO-C.2010.3.f1

Volume 2010 | Issue 3 | Page 4

A Vivisection of ev

Figure 2. Occurrence frequency of perceptron outputs. A: The
normalized histogram of the errors in ev for ten million trials using an
all ones target (red line), and ten million trials using an all zeros target
(black line). The two histograms are nearly graphically indistinguishable.
There are zero errors in 0.15% of the trials for both. B: The Gaussian
distribution we expect from the Laplace-DeMoivre theorem. C: This
curve, equal to the results in A divided by the results in B, reveals the
degree to which the frequency of occurrence for output sequences has
been amplified by ev’s perceptron. The range of all three plots is from
zero to 256. The frequency of all zeros expected by a randomly chosen
string of bits is multiplied by 1.8 x 1074 by the perceptron. The frequency
of occurrences of exactly 16 ones is amplified by a factor of 2.8 x 1049.
doi:10.5048/BIO-C.2010.3.f2

all of the elements in
�
S to be positive. Once the threshold opera-

tor is applied, all of the positive values become one. Likewise, the
opposite polarity of the bias will push the outputs of the threshold
to zero. Only with biases near zero will the resulting binary string
be a nearly even mix of ones and zeros. Outcomes with a large
number of ones and a few zeros, or few ones and many zeros, are
therefore more probable outcomes of the perceptron.

No site a binding site. Analyzing the target sequence consisting
of all zeros (i.e., no site is a binding site) illustrates the tendency
for the perceptron to produce certain outputs more frequently than
others. To see this, we ran the perceptron in Figure 1 once us-
ing uniform random sampling with no iteration and assessed the
Hamming distance between the perceptron output bits and the tar-
get sequence of all zeros. The process was repeated using freshly
generated random numbers. Figure 2A shows a histogram of the
Hamming distance between randomly generated perceptron out-
puts and the target sequence for ten million such trials when the
target sequence is all zeros. Rather than dipping to nearly zero at
the origin, the empirical probability of success is

 q = 0.00155. (13)

The exogenous information for an output of all zeros is there-
fore only IS = log2(q) ≈ 9 bits.11 Similar experiments were per-

11 From Jensen’s inequality [20], E log E2 p p[] ≤ []log2 , so this estimate is biased.
The probability of predicting the outcome of 9.3 flips of a fair coin, however, is
given by Equation 13. The same comment applies for Equations 15 and 16.

formed for an all ones target sequence, with nearly identical re-
sults.12 The substantial decrease in difficulty (9 bits instead of the
expected 256 bits) is due to active information introduced by the
perceptron structure for an all zeros target. The reason, as we
have shown, is that the ev perceptron is heavily predisposed for
generating successful solutions for targets of the type shown in
Equation 10 where a few ones are sprinkled in a sea of zeros.

A total of 261 nucleotides defines the perceptron structure in
Figure 1, and the size of the search space is given by Equation 11.
It follows that an astounding q|Ω | ≈ 2 × 10154 genome sequences
produce an output of all zeros.

An upper bound on exogenous information. Despite this predis-
position, the probability of an unassisted search generating zeros
with sparsely occurring ones, as specified for example in Equation
10, is still very small. We have two empirical estimates of the up-
per bound on the endogenous information of the ev problem. In
both cases we conservatively assume there is only one perceptron
that generates an output matching a desired 16 bit target, like that
of Equation 10.

First, from the data used to plot Figure 2A, the frequency of
occurrence of strings with zeros with precisely 16 ones is 0.0024.
The probability of hitting the target in Equation 10 is then p = Pr
[hitting target] = Pr [hitting target | 16 ones] × Pr [16 ones]. There
are

 (14)

possible ways to arrange 16 ones and 240 zeros. Because there
have been successful simulations, we know at least one of these
can match the target sequence. Thus Pr [hitting target |16 ones] ≥ π
and p ≥ 0.0024 × π = 2 × 10-28. We can therefore estimate

 IS < 92 bits. (15)

Second, ev requires that all binding sites be restricted to the
second half of the genome (positions 126 through 256), as they
are in the target sequences. After randomly initializing 1.5 billion
independent genomes, 187 outputs were found to have exactly 16
ones occurring along the second half of the genome. Repeating the
above calculations13 results in the slightly tighter bound of

 IS < 90 bits. (16)

Search algorithms using the ev perceptron.
A search algorithm’s role is to extract active information from

the knowledge sources. Some search procedures do this better than
others. In the case of ev, sources of knowledge guiding the search
include the Hamming oracle and the predisposition of the percep-
tron to generate outputs that favor the type of targets shown. We
show here that the evolutionary algorithm originally used for ev
performs worse than simple stochastic hill climbing.14

Algorithm A1 (stochastic hill climbing). Stochastic hill climb-
ing can be performed at the perceptron level involving all of the

12 We found 15,234 successes in 10 million trials. For a target sequence of all ones,
therefore, p ≃ 0.00152.

13 We recalculated using 131
16

 to reflect the smaller number of potential binding site

positions.
14 This is also the case for AVIDA software [15]. The evolutionary search algorithm

used in the original paper was shown to extract information from the knowledge
sources in the program much less efficiently than other search algorithms [18].

1 256
16

1025π = ≈()

http://dx.doi.org/10.5048/BIO-C.2010.3.f2

Volume 2010 | Issue 3 | Page 5

A Vivisection of ev

genome bases in ev. We initialized by choosing 261 genome bases
at random, and then computed the error output (see Figure 1). One
of the 261 bases was replaced at random and the error output was
recomputed. If the error was the same or smaller, the change was
kept. If not, the change was discarded and the process repeated.15
Simulation of K = 10,000 separate searches16 with Qmax = 100,000
and random initializations produced a 100% success rate. The av-
erage number of queries for success was ⟨Q⟩ = 10,601. According
to Equation 8, the estimated normalized active information per
mean query for algorithm A1 is therefore

 (17)

Algorithm A2 (evolutionary perceptron inversion of ev). The
original ev program [16] used an evolutionary search algorithm
for finding binding sites. The search was seeded with M = 64 ran-
domly selected organisms and, in each iteration, two adjacent bits
from a randomly chosen nucleotide in each organism were dis-
carded, replacing them with two randomly chosen bits. (As before,
the nucleotides are represented by two-bits.) Half of the mutated
genomes with the highest fitness were then selected to be the par-
ents of the next generation.17

Using Qmax = 100,000 as the maximum query count per search18,
simulation of K = 10,000 separate searches using randomly gener-
ated initializations produced 9,115 successes. The average num-
ber of queries for success was, ⟨Q⟩ = 63,568 or 993 generations.
This compares to the single simulation result of 704 generations
reported in the original ev paper [16]. Applying Equation 6, the
estimated normalized active information per mean query for algo-
rithm A2 thus gives

 (18)

Comparing with Equation 17, we see that algorithm A1 is
roughly 700 times more efficient than A2, the evolutionary algo-
rithm used by ev.

The effect of differing mutation rates. The above results were
obtained using a fixed mutation rate of one base change (two
bits) per organism per generation for both A1 and A2. We further
measured the search performance of the A2 strategy using several
different mutation rates19. A comparison of success rate and muta-
tion rate for the A2 algorithm is shown in Figure 3. The optimal
mutation rate for A2 was found to be roughly 1.75 mutations per
child,20 per generation, with the 1 mutation per child rate chosen
by Schneider being slightly less efficient, but still within the range
of workable mutation rates.

The effect of random uniform generated binding sites in sto-
chastic hill climbing. We have shown the perceptron favors gen-

15 This algorithm is commonly denoted as (1+1)-ES [25,26].
16 All experimental results in this paper were obtained using the online ev simulation

software available at http://www.evoinfo.org/ev.
17 The standard notation for this algorithm is (32,64)-ES [25,26].
18 10,000 populations each running for a maximum of 1,563 generations (correspond-

ing to Qmax= 64 × 1,563 ≈ 100,000 queries).
19 All tests were performed with 10,000 runs, using a population size of 64 and a query

cutoff of 100,000 queries.
20 Fractional mutations are generated by randomizing the mutation number. To achieve

1.75 mutations per child, each child receives at least one mutation and has a 75%
chance of receiving an additional, second mutation.

I
I
�

Ω

≈ × −1 09 10 4.

I
I
�

Ω

≈ × −1 55 10 7.

eration of strings of output zeros peppered with occasional ones,
or ones peppered with zeros. The target sequences generated in the
original ev program are the former. Further experiments demon-
strated a severe performance decrease when the binding sites are
chosen by a 50-50 coin flip. We simulated the ev search using ran-
domly generated binding sites with each site along the second half
of the genome (positions 126 through 256) having a 50% chance
of being marked as a binding site. We measured the performance
using mutation rates of 1, 1.5, 2, 4 and 8 mutations per child,
per generation, with a query cutoff of Qmax = 100,000 queries for
10,000 runs each. The ev search was only successful for mutation
rates of 1 and 1.5, failing to find the target in under 100,000 que-
ries for all other mutation rates. A mutation rate of 1 mutation per
child using the random 50-50 bindings resulted in a success rate
of only 0.05 (compared to the prior success rate of 0.91), while a
mutation rate of 1.5 mutations per child resulted in a success rate
of 0.0003 (compared to the prior success rate of 0.99). Changing
the binding sites pattern to an even mix of zeros and ones therefore
severely hampers search performance.

Figure 3. Search success rate vs. mutation rate for algorithm A2. Re-
sults are from a population size of 64 and a query cutoff of Qmax = 100,000
queries. doi:10.5048/BIO-C.2010.3.f3

CONCLUSIONS
The success of ev is largely due to active information intro-

duced by the Hamming oracle and from the perceptron structure.
It is not due to the evolutionary algorithm used to perform the
search. Indeed, other algorithms are shown to mine active infor-
mation more efficiently from the knowledge sources provided by
ev [13].

Schneider [16] claims that ev demonstrates that naturally occur-
ring genetic systems gain information by evolutionary processes
and that “information gain can occur by punctuated equilibrium”.
Our results show that, contrary to these claims, ev does not dem-
onstrate “that biological information...can rapidly appear in ge-
netic control systems subjected to replication, mutation, and selec-
tion” [16]. We show this by demonstrating that there are at least
five sources of active information in ev.21

1. The perceptron structure. The perceptron structure is pre-
disposed to generating strings of ones sprinkled by zeros
or strings of zeros sprinkled by ones. Since the binding site
target is mostly zeros with a few ones, there is a greater

21 Two of the sources of active information, 3 and 4, are discussed in our previous
work [1,2,5].

http://dx.doi.org/10.5048/BIO-C.2010.3.f3

Volume 2010 | Issue 3 | Page 6

A Vivisection of ev

predisposition to generate the target than if it were, for ex-
ample, a set of ones and zeros produced by the flipping of
a fair coin.

2. The Hamming Oracle [13]. When some offspring are cor-
rectly announced as more fit than others [27], external
knowledge is being applied to the search and active infor-
mation is introduced. As with the child’s game, we are be-
ing told with respect to the solution whether we are getting
“colder” or “warmer”.

3. Repeated Queries. Two queries contain more information
than one. Repeated queries can contribute active informa-
tion [1,2,5].

4. Optimization by Mutation. This process discards mutations
with low fitness and propagates those with high fitness.
When the mutation rate is small, this process resembles
a simple Markov birth process [27] that converges to the
target [1,2,5].

5. Degree of Mutation. As seen in Figure 3, the degree of mu-
tation for ev must be tuned to a band of workable values.

Our analysis highlights the importance of disclosing sources of
knowledge in computer searches when measuring the ability of
search mechanisms to generate novel information. As far as ev
can be viewed as a model for biological processes in nature, it
provides little evidence for the ability of a Darwinian search to
generate new information. Rather, it demonstrates that preexisting
sources of information can be re-used and exploited, with vary-
ing degrees of efficiency, by a suitably designed search process,
biased computation structure, and tuned parameter set. This con-
firms that the conservation of information principle, as manifest in
the No Free Lunch Theorems, is “very useful, especially in light
of some of the sometimes-outrageous claims that had been made
of specific optimization algorithms” [4].

Acknowledgements
The authors are appreciative of the detailed, insightful and use-

ful comments made by one of the reviewers. We also are indebted
to Ann Gauger for her detailed reading of the manuscript and nu-
merous invaluable suggestions to improve the presentation.

1. Dembski WA, Marks II RJ (2009) Conservation of information in search:
Measuring the cost of success. IEEE T Syst Man Cy A 39: 1051-1061.
doi:10.1109/TSMCA.2009.2025027

2. Dembski WA, Marks II RJ (2009) Bernoulli’s principle of insufficient reason
and conservation of information in computer search. IEEE Sys Man Cybern
San Antonio Oct 11-14: 2647-2652. doi:10.1109/ICSMC.2009.5346119

3. Schaffer C (1994) A conservation law for generalization performance. In:
Cohen WW and Hirsch H, eds. Proceedings of the Eleventh International
Machine Learning Conference. Rutgers University (New Brunswick). pp
259-265.

4. Christensen S, Oppacher F (2001) What can we learn from No Free Lunch? A
first attempt to characterize the concept of a searchable function. In: Proceed-
ings of the 2001 Genetic and Evolutionary Computation Conference. Morgan
Kaufman (San Mateo). pp 1219–1226.

5. Dembski WA, Marks II RJ (2010) The search for a search: Measuring the
information cost of higher level search. Journal of Advanced Computational
Intelligence and Intelligent Informatics 14: 475-486.

6. Duda RO, Hart PE, Stork DG (2001) Pattern Classification, 2nd ed. John
Wiley & Sons, Inc. (New York).

7. Ho Y-C, Pepyne DL (2001) Simple explanation of the No Free
Lunch theorem of optimization. IEEE Decis Contr P 5: 4409-4414.
doi:10.1109/.2001.980896

8. Ho Y-C, Zhao Q-C, Pepyne DL (2003) The No Free Lunch Theorems: Com-
plexity and security. IEEE T Automat Contr 48: 783-793. doi:10.1109/
TAC.2003.811254

9. Koppen M, Wolpert DH, Macready WG (2001) Remarks on a recent pa-
per on the ‘no free lunch’ theorems”. IEEE T Evolut Comput 5: 295-296.
doi:10.1109/4235.930318

10. Weinberg B, Talbi EG (2004) NFL theorem is unusable on structured classes
of problems. IEEE C Evol Computat 1: 220-226.
doi:10.1109/CEC.2004.1330860

11. Wolpert D, Macready WG (1997) No Free Lunch Theorems for optimization.
IEEE T Evolut Comput 1: 67-82. doi:10.1109/4235.585893

12. De Jong KA (2006) Evolutionary Computation: A Unified Approach. MIT
Press (Cambridge).

13. Ewert W, Montañez G, Dembski WA, Marks II RJ (2010) Efficient per query
information extraction from a Hamming oracle. 42nd Southeast Symp Syste:
290-297. doi:10.1109/SSST.2010.5442816

14. Lohn JD, Linden DS, Hornby GS, Kraus WF, Rodriguez-Arroyo A, et al.
(2004) Evolutionary design of an X-band antenna for NASA’s Space Tech-
nology 5 mission. IEEE Antennas Prop 3: 2313-2316.
doi:10.1109/APS.2004.1331834

15. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of
complex features. Nature 423: 139-144. doi:10.1038/nature01568 Article

16. Schneider TD (2000) Evolution of biological information. Nucleic Acids Res
28: 2794-2799. doi:10.1093/nar/28.14.2794

17. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech
J 27: 379-423 and 623-656.

18. Ewert W, Dembski WA, Marks II RJ (2009) Evolutionary synthesis of nand
logic: Dissecting a digital organism. IEEE Sys Man Cybern San Antonio Oct
11-14: 3047-3053. doi:10.1109/ICSMC.2009.5345941

19. Marks II RJ (2009) Handbook of Fourier Analysis and Its Applications. Ox-
ford University Press (Oxford).

20. Cover TM, Thomas JA (2006) Elements of Information Theory, 2nd Edition.
Wiley-Interscience (Hoboken).

21. Strachan IGD (2003) An evaluation of ev. International Society for Complex-
ity, Information, and Design. http://www.iscid.org/papers/Strachan_EvEval-
uation_062803.pdf

22. Jensen CA, Reed RD, Marks II RJ, El-Sharkawi MA, Jung J-B; et al. (1999)
Inversion of feedforward neural networks: algorithms and applications. P
IEEE 87: 1536-1549. doi:10.1109/5.784232

23. Reed RD, Marks II RJ (1999) Neural smithing: Supervised learning in feed-
forward artificial neural networks. MIT Press (Cambridge).

24. Papoulis A (1991) Probability, Random Variables, and Stochastic Processes,
3rd ed. McGraw-Hill (New York). pp 537-542.

25. Babu GP, Murty MN (1994) Clustering with evolutionary strategies. Pattern
Recogn 27: 321-329. doi:10.1016/0031-3203(94)90063-9

26. Bäck T, Schwefel H-P (1993) An overview of evolutionary algorithms for pa-
rameter optimization. Evol Comput 1: 1-23. doi:10.1162/evco.1993.1.1.1

27. MacKay DJC (2002) Information Theory, Inference & Learning Algorithm.
Cambridge University Press (Cambridge).

http://dx.doi.org/10.1109/TSMCA.2009.2025027
http://dx.doi.org/10.1109/ICSMC.2009.5346119
http://dx.doi.org/10.1109/.2001.980896
http://dx.doi.org/10.1109/TAC.2003.811254
http://dx.doi.org/10.1109/TAC.2003.811254
http://dx.doi.org/10.1109/4235.930318
http://dx.doi.org/10.1109/CEC.2004.1330860
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/SSST.2010.5442816
http://dx.doi.org/10.1109/APS.2004.1331834
http://dx.doi.org/10.1038/nature01568
http://dx.doi.org/10.1093/nar/28.14.2794
http://dx.doi.org/10.1109/ICSMC.2009.5345941
http://dx.doi.org/10.1109/5.784232
http://dx.doi.org/10.1016/0031-3203(94)90063-9
http://dx.doi.org/10.1162/evco.1993.1.1.1

