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Abstract—Previously, we demonstrated that rule explosion is 

avoidable in fuzzy inference engines by mapping an intersection 
rule configuration (IRC) to a union rule configuration (URC).  
Although conversion between IRC and URC systems is simple 
for a special, additively separable class of IRC rule tables, the 
conversion process is more difficult when the IRC rule table is 
additively inseparable.  In a previous paper, we demonstrate a 
layered URC architecture can implement these types of systems, 
but did not provide a method for computing the weights.  In this 
follow-on paper, we provide a Fourier-based algorithm for 
computation of the weights.  We also prove that this technique is 
optimal in the sense that the mean-square approximation error 
is minimized for a fixed amount of resources.  Finally, through 
the course of an example, we explore implementation issues and 
evaluate the overall effectiveness of the technique.   

I. INTRODUCTION 

revious work has demonstrated that rule explosion is 
avoidable in fuzzy inference engines by converting an 

intersection rule configuration (IRC) to a union rule 
configuration (URC).  Specifically, in [1-3], a mapping 
between the IRC and the URC is provided for a special class 
of IRC rule tables.  In [2], a layered URC architecture is 
introduced that provides for universal approximation, and 
hence implementation of all other IRC rule tables.  Currently, 
however, design of a layered URC system requires the use of 
costly (and potentially exhaustive) search techniques to find 
those projections that best represent a surface interpolated 
from the desired (IRC) rule table.   

Here we provide a novel Fourier-based technique for 
designing layered URC fuzzy systems that eliminates the 
need for costly search techniques.  Further, we prove that this 
technique is optimal in that the mean-square approximation 
error is minimized for a fixed amount of resources.  Indeed, 
the mean-square approximation error can be reduced to an 
arbitrary degree such that relatively simple additively 
inseparable surfaces are reconstructed to a high degree of 
accuracy with a minimal cost in resources. 

This paper is structured as follows: a brief review of the 
IRC, URC, and pertinent previous results are discussed in 
Section II.  Section III follows with the development of the 
novel technique for URC fuzzy system design.  A short 

example in Section IV illustrates the effectiveness of this 
technique and addresses various implementation issues.  
Section V closes with a few concluding remarks. 

II. A REVIEW OF THE IRC AND URC 
In [4], Combs differentiates between two types of fuzzy 

systems.  In the first type, multi-antecedent rules map 
antecedent subsets connected with the intersection operator to 
a consequent subset.  He refers to this structure as an 
intersection rule configuration (IRC).  He refers to a second 
type of fuzzy system structure, which is composed strictly of 
single antecedent rules connected by the union operator, as a 
union rule configuration (URC)1.   

The connection between these rule structures is 
conceptually well-represented in the propositional logic 
equivalence   

 
[ ] [ ])()()( rqrprqp ⇒∪⇒⇔⇒∩ ,     (1) 

 
where p and q are antecedents, r is a consequent, ∩  
represents intersection, ∪  represents union, and ⇒  
represents the implication operator.  The expression on the 
left is indicative of an IRC, whereas the expression on the 
right is indicative of a URC.  Importantly, the URC requires 
exponentially fewer rules than the IRC; hence, rule explosion 
is avoidable through use of a URC.  However, in fuzzy logic, 
the IRC and the (single layer) URC rule structures are only 
equivalent under certain constraints [1-3,6-13]. 
 Consider a multiple input, single output IRC fuzzy system 
in which the T-norm is implemented as a bounded sum, the 
T-conorm is implemented as a scalar product, and the 
implication operator is implemented as a scalar product 
(Mamdani implication).  For P antecedents and centroid 
defuzzification, the MISO IRC output formula is expressed in 
tensor2 form as, 

 
1 Yi et al. propose a similar rule structure, which is composed of single 

input rule modules (SIRMs) [5].  However, under certain constraints, this 
structure is identical to the URC. 

2 In this paper, tensor notation adopted as it greatly simplifies the 
formulae that result.   
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µ  is an element of a vector of sum-normalized 

membership values (one value per antecedent subset) for the 
ith antecedent.  Each antecedent contains iN  subsets, each of 

which are indexed by ia .  F denotes a thP  order rule table 
tensor, an element of which is denoted 

Paaa
f ,,, 21 L .  Since 

each consequent subset is completely characterized by its 
center of mass, each 

Paaa
f ,,, 21 L  is a scalar-valued center 

of mass.   
In contrast, the output formula for a MISO URC fuzzy 

system with centroid defuzzification, using the same T-norm, 
T-conorm, and implication operators as defined above, is 
given by  
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where each antecedent subset is associated with a consequent 
subset whose center of mass is jiz , .  Observe that the MISO 

IRC contains one multi-antecedent rule per element in F, 
such the total number of rules is given by the product of the 
Ni.  Conversely, the MISO URC contains one single-
antecedent rule per membership vector element, giving a total 
number of rules equal to the sum of the Ni.  Indeed, with 
respect to an increase in the number of antecedents, the URC 
achieves a linear growth in the number of fuzzy rules, while 
the IRC is crippled by an exponential growth in the number 
of rules. 
 In [1-3], Weinschenk et al. explore the relationship 
between IRC and URC fuzzy systems and prove that the IRC 
and the URC fuzzy inference engines given in (2) and (3) can 
yield identical performance if two constraints are met.  First, 
the IRC rule table must be additively separable.  A multi-
dimensional rule table F is said to be additively separable if 
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where iv  is a projection vector corresponding to the ith 
antecedent of a multi-dimensional IRC rule table F.  
Alternatively, additive seperability is expressible as 
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for a continuous multivariate function f.   
 Secondly, equality between IRC and URC fuzzy systems 
requires that 
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for all i.  If these two constraints are met, the output formula 
for the URC can be written in terms of projection vectors and 
simplified to yield 

∑
=

=
P

i
ijijiURC xvy

1
,, )(ˆ)( µx .                   (7) 

When the IRC rule table is additively inseparable, a more 
complicated approach is required. 

III. ADDITIVELY INSEPARABLE IRC RULE TABLES 
 When the IRC rule table tensor is not additively separable 
as described in (4), equality between the IRC and URC 
systems is lost.  One strategy for extending the URC 
framework so that it may accurately implement additively 
inseparable IRC rule tables appeals to the field of 
tomography.  In the field of tomography the aim is to 
reconstruct a surface or manifold from its projections, where 
each projection occurs at a different angle.  Thus, 
reconstruction of a manifold is achieved by summing a set of 
filtered projections.  Sets of orthogonal filtered projections, 
when sampled, form additively separable matrices that may 
be directly implemented by a URC.   
 Thus, an additively inseparable IRC rule table may be 
implemented in a layered URC architecture, where the first 
layer generates rotations of the inputs axes and the second 
layer forms the necessary filtered projections.  The primary 
challenge is to determine which projections (at which angles) 
most accurately represent the rule manifold.  This challenge 
is the converse of the problem commonly encountered in 
tomography where one attempts to reconstruct an unknown 
surface from its known projections.  A tomographic approach 
for reconstructing a known surface with arbitrary accuracy is 
the focus of Subsection A.  It is also necessary to develop a 
method for rotating the input axes within the URC 
framework—this is discussed in Subsection B.  

A. Approximation of additively inseparable rule tables 
Recall the multi-dimensional Fourier transform pair, given 

by  
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where in both (8) and (9) a shorthand notation is used to 
express integration over the entire space as evidenced by the 

ud and xd , respectively.  Converting the integration in (9) to 
spherical coordinates, one obtains 
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where ξ  is a unit vector in Pℜ  determined by θ , and θα  is 
the remaining portion of the Jacobian.  Integration over the 
angles can be rewritten in terms of Riemann sums to find 
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where the angles θ  have been replaced with K  and 

( ) 1−
=∆ PKπ .   
Without loss of generality, all of the sums in (11) can be 

replaced by a single sum over m , where m  ranges from 1 
to 1−= PKM .  Further, for a fixed k, the integral over v is 
simply the 1-D inverse Fourier transform of a high-pass 
filtered version of ),( mξvF  along a line passing through 
the origin,  
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that is oriented according to the angles given in 

),,( 1 KK Pnn ππ L .  Thus, a multidimensional manifold 
may be represented as an infinite sum of 1-D functions as 
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where )(mw  approaches unity as M goes to infinity and will 
be discussed later.  Notice for sufficiently large M ,  
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 A projection through the manifold )(xf , given by the 
Radon transform 

xx dfp )()( ∫
∞
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is closely related to the P-D Fourier transform of )(xf  [14]. 
According to what is popularly known as the central slice 
theorem, the 1-D Fourier transform of a projection through a 
surface at a given angle is equal to a slice, taken through the 
origin, of the P-D Fourier transform at the same angle or  
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Thus, through substitution of (16) into (12) we see that 

)( mmg τ  is a filtered version of )( mmp τ  which, with some 
manipulation, is represented in the spatial domain by  
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for odd P  and 
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for even P , where ∗  represents convolution.  Finally, since 

)( mmg τ  is a filtered version of )( mmp τ , and all of the 
D1−  )( mmg τ  are back-projected into higher dimensions 

before being summed together to reconstruct the original 
manifold, (14) is commonly referred to as a summation of 
filtered back-projections in the tomography literature.   

One may then define an approximation to )(xf  as 
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where Φ  is a subset of L indices selected from the M  
indices given in (14).  However, one must carefully choose a 
strategy for selecting which terms to keep from (14).  Since 
each term kept translates to an increase in system complexity, 
it is important to choose a combination of the fewest possible 
terms to achieve a desired reconstruction accuracy.  To this 
end, consider the following strategy for minimizing the 
mean-square reconstruction error.   

Recall the mean-square approximation error, 
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Substitution of (14) and (19) into (20) gives 
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Notice that the mean square error is also the energy in a 
space-domain function that is composed of the 1-D filtered 
projections not kept in Φ .  Application of Parseval’s 
theorem results in 
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where )(mW  is desired to be unity over an N-D “pie-slice” 
defined by m.  This imposes a windowing effect in space that 



 

can be made arbitrarily insignificant by increasing M and will 
be discussed in more detail in a future publication.  As the 

)( mm vG  are 1-D functions that lie in P-dimensional slices 
which approximate portions of the Riemann sums given in 
(11), the slices are disjoint.  Thus, all cross terms resulting 
from the squaring operation must equal zero.   

Therefore, when the integration over the angles is 
expressed in terms of approximate Riemann sums, 
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However, when the integration is moved inside the sum, one 
finds 
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in which case the mean-square approximation error is 
obtained by summing the energy in the slices of the filtered 
P-D Fourier transform that are not retained in Φ .  Therefore 
the mean-square reconstruction error is minimized for a fixed 
amount of resources by choosing to keep those terms with the 
most energy. 
 In order to proceed, a transform is needed to efficiently 
compute the energy in all possible slices through the origin of 
the P-D Fourier transform.  This is accomplished with the X-
Ray transform given by 
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where ρ  is the distance from the origin and ξ  is a unit 
vector that gives the orientation of a line.  However, since we 
are only interested in those (filtered) slices of F  that pass 
through the origin, ρ  is set to zero. 
 As will be discussed in the next subsection, the resources 
required to rotate the inputs axes are minimal as this 
operation simply amounts to a weighted sum and need not 
even be performed by a fuzzy layer.  Neglecting these 
resources, one finds the complexity of the layered URC 
scales with the number of rules in the second URC layer 
given by NL .  In Section II, the rules contained in an IRC-
based system are given as the product of the numbers of 
antecedent subsets or PN .  Thus, the rule savings offered by 
the layered URC is given as 

Complexity Savings (%)  1001 ×= −PN
L

.         (26)  

 
Thus, when the number of projections required is moderate, 
the complexity savings is exponential. 

B.  Rotation of the input axes 
Once the 1-D functions )( mmg τ  are selected, the input 

axes must be rotated to accommodate the desired projections 
as shown in Fig. 1.  This rotation is implemented by  

ξr ⋅= xθ ,                             (27) 
 

where, once again, ξ  is a unit vector that indicates the 
orientation of the new axis.  Conveniently, the rotated input 
given in (27) is additively separable as defined in (5), where 
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Thus, (28) is easily implemented in a URC because the URC 
output formula may be written as 
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Thus, membership functions may be interpreted as 
interpolation kernels such that the function )( ii xs  is an 
interpolated version of iix ξ , where the elements of the 
projection vectors jiv ,  are samples of iix ξ .  Indeed, it is 

possible to perform any type of Lagrange interpolation by 
choosing the membership functions to be piecewise defined 
from sections of the Lagrange interpolating polynomials.  
Other types of interpolation are also possible. 
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Fig. 1.  The function )( 11 τg  operates on the variable 1τ  which is 

oriented as shown with respect to the input axes 1x and 2x . 

IV. IMPLEMENTATION ISSUES 
Naturally, one may use the integral transforms given above 

to directly compute the optimum 1-D functions and their 
corresponding orientations in space for a given P-D manifold 
whose behavior is known over the entire space.  However, 
when the P-D manifold with infinite support is artificially 
truncated (or windowed) such that the 1-D functions may be 



 

computed using a discrete mathematics software package, the 
process becomes slightly more involved.  Two such 
procedures are summarized below. 

First, one may elect to directly compute the P-D FFT on a 
rectangular grid of samples from the desired manifold.  
However, the implementation of this method requires the use 
of a circular (or circularly symmetric) window in order to 
prevent the transform from being unnecessarily biased by the 
long diagonals of the rectangular grid.  Next, the Fourier 
transform is filtered according to (12) followed by 
computation of the energy in each slice (via the X-ray 
transform) in order to select the optimum 1-D functions and 
their orientations.  Once the optimum slices of the P-D 
Fourier transform have been identified, an approximate 
manifold may be constructed.  However, this approach is 
somewhat undesirable as it is necessary to interpolate in the 
frequency domain—a procedure that can unnecessarily 
introduce a great deal of error. 

Alternatively, one may compute spatial projections 
through the P-D manifold via the radon transform given in 
(15).  Recall these projections are related to slices of the P-D 
Fourier transform through the Fourier slice theorem 
discussed previously.  Thus, these projections may be filtered 
in space by (17) or (18), or in frequency by (12).  Next, the 
energy per slice is computed in order to select the optimum 
1-D functions and function orientations.  In this method, 
interpolation is only performed in the spatial domain, which 
should keep errors to a minimum as it is presumed that the 
manifold is well known over the region of interest.   

When the manifold is only known over a rectangular grid 
of points, the projections through the surface must be carried 
out in the manner demonstrated below (in 2-D) in Fig. 2.  In 
Fig. 2, a 2-D surface is accurately known on an a × a region 
of space.  In order to prevent the square window from biasing 
the projections, projections must be computed from equal-
area square regions that lie within the a × a  grid.  Naturally, 
when reconstructing the manifold from filtered versions of 
these projections, the reconstruction is only accurate in that 
region where all of the projections overlap—the innermost 
dashed circle in Fig. 2.  Therefore, the largest grid that may 
be accurately reconstructed from the original set of samples 
is of dimensions 2/a × 2/a  as shown. 

 

a

2/a

a
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Fig. 2.  Computation of projections from a rectangular gird of 
samples. 

 
Now let us consider a specific 2-D example.  We choose 

an XOR-shaped surface such that these results may be easily 
connected to our previous findings in other publications.  In 
particular, we approximate the additively inseparable surface 
given by 

2121 2),( xxxxf −= .            (31) 
 

Note that this surface is additively separable when rotated by 
45 degrees, as 

2
2

2
145 xxf −=o .       (32) 

 
 Projections are computed for 180 angles (in degrees) 

evenly spaced on the interval ]179,0[ .  These projections are 
then filtered in the frequency domain according to (12).  
Finally, the energy in each of these slices is computed and 
plotted in Fig. 3.  Notice that the filtered projections with the 
most energy are those corresponding to angles of 45 and 135 
degrees, as one would expect given (32).  The filtered 
projections obtained at 45 and 135 degrees are shown along 
with their ideal counterparts in Fig. 4.  Notice that the 
estimates are most accurate in the center.  This is a direct 
result of the filtering as the projection is convolved in space 
with the reciprocal of τ , as described in (18).  Thus, the 
points closer to the edges of the rectangular window are less 
accurate as the convolutions attempt to bring in non-zero 
portions of (31) that are implicitly defined to be zero by the 
rectangular window. 

 

 
Fig. 3.  Energy per filtered projection vs. function orientation 
(projection angle). 
  
 The original surface from (31) is shown in Fig. 5.   The 
reconstructed surface is not shown as it is visually 
indistinguishable from Fig. 5.  However, the absolute error 
per sample is shown in Fig. 6.  Notice that, as indicated in 
Fig. 4, the most significant error occurs on the periphery. The 
overall mean-square error for the reconstruction is 6.25x10-5 
percent per sample. 
  



 

 
Fig. 4.  Estimated filtered projections for the desired surface given 
in (31) at angles of 45 and 135 degrees.  The actual filtered 
projections are shown in dashed lines. 

   
Fig. 5.  Central portion of the original XOR surface.  The 
reconstructed surface is visually indistinguishable from this figure. 
 

 
Fig. 6.  Mean-square error, per sample (in percent).   

 
 Finally, a 2-layer URC fuzzy system is constructed, the 
second layer of which is constructed from samples of the 
filtered projections shown in Fig. 4.   Further, an IRC system 
is also constructed for comparison purposes.  However, the 
output surfaces for both the URC and IRC fuzzy systems are 
visually indistinguishable from that shown in Fig. 5 and, due 
to a lack of space, are not shown.  The mean-square error per 

sample is 8.64x10-5 percent.  Thus, the URC accurately 
captures the IRC functionality while, importantly, the URC 
retains its exponential complexity savings.  For a further 
discussion of the resulting complexity reduction, please 
consult [3]. 

V. CONCLUSION 
We have developed a method for constructing URC fuzzy 

systems from IRC fuzzy systems that have an additively 
inseparable rule table.  This Fourier-based approach relies on 
tomographic principals to determine those projections 
through the desired rule manifold that will provide, for a 
fixed amount of resources, an optimal reconstruction in the 
minimum mean-square reconstruction error sense.  This 
approach allows one to achieve (in many cases) an 
exponential reduction in complexity with arbitrary 
reconstruction accuracy where the tradeoff between 
reconstruction accuracy and amount of resources is easily 
adjusted. 

 
REFERENCES 

 
[1] J. J. Weinschenk, W. E. Combs, R. J. Marks II, “Avoidance of rule 

explosion by mapping fuzzy systems to a union rule configuration,” 
Proc. of the FUZZ-IEEE, pp 43-48, 2003. 

[2] J. J. Weinschenk, R. J. Marks II, W. E. Combs, “Layered URC fuzzy 
systems: a novel link between fuzzy systems and neural networks,” 
Proc. of the Intl’ Joint Conf. Neural Nets, pp 2995-3000, 2003. 

[3] J. J. Weinschenk, R. J. Marks II, W. W. Combs, “On the avoidance of 
rule explosion in fuzzy systems,” forthcoming from IEEE Transactions 
on Fuzzy Systems. 

[4] W. E. Combs and J. E. Andrews, “Combinatorial rule explosion 
eliminated by a fuzzy rule configuration,” IEEE Trans. Fuzzy Systems, 
vol. 6, no. 1, pp. 1-11, Feb. 1998. 

[5] J. Yi, N. Yubazaki, and K. Hirota, “A proposal of SIRMs dynamically 
connected fuzzy inference model for plural input fuzzy control,” Fuzzy 
Sets and Systems, vol. 125, pp. 79-92, 2002. 

[6] J. M. Mendel and Q. Liang, “Comments on ‘Combinatorial rule 
explosion eliminated by a fuzzy rule configuration,’” IEEE Trans. 
Fuzzy Systems, vol. 7, no. 3, pp. 396-373, June 1999. 

[7] W.E. Combs, "Author's Reply,” IEEE Transactions on Fuzzy Systems, 
vol. 7, no. 3., pp. 371-373, June 1999.  

[8] S. Dick and A. Kandel, “Comment on ‘Combinatorial rule explosion 
eliminated by a fuzzy rule configuration,’” IEEE Trans. Fuzzy Systems, 
vol. 7, no. 4, pp. 475-477, Aug. 1999. 

[9] W.E. Combs, "Author's Reply,” IEEE Trans. on Fuzzy Systems, vol. 7, 
no. 4., pp. 477-478, Aug 1999. 

[10] E. Trillas and C. Alsina, “On the law [pAq->r] = [(p->r)V(q->r)] in 
fuzzy logic,” IEEE Trans. on Fuzzy Systems, VOL. 10, NO. 1, pp. 84-
88, Feb 2002. 

[11] B.-S. Chen, H.-J. Uang, and C.-S. Tseng, “Robust Tracking 
Enhancement of robot systems including motor dynamics: a fuzzy-
based dynamic game approach,” IEEE Trans. Fuzzy Systems, Vol. 6, pp 
538-552, Nov 1998. 

[12] H. Emara and A. L. Elshafei, “Comments on ‘Robust Tracking of robot 
systems including motor dynamics: a fuzzy-based dynamic game 
approach’”, IEEE Trans. on Fuzzy Systems, Vol. 10, No. 3, pp. 412-
414, June 2002. 

[13] B.-S. Chen, H.-J. Uang, and C.-S. Tseng,  “Author’s Reply”, IEEE 
Trans. on Fuzzy Systems, Vol. 10, No. 3, pp. 414, June 2002. 

[14] A. G. Ramm and A. I. Katsevich, The Radon Transform and Local 
Tomography, CRC Press, 1996. 


