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Abstract—Block loss and propagation error due to cell loss or
missing packet information during the transmission over lossy net-
works can cause severe degradation of block and predictive-based
video coding. Herein, new fast spatial and temporal methods are
presented for block loss recovery. In the spatial algorithm, missing
block recovery and edge extention are performed by pixel replace-
ment based on range constraints imposed by surrounding neigh-
borhood edge information and structure. In the temporal algo-
rithm, an adaptive temporal correlation method is proposed for
motion vector (MV) recovery. Parameters for the temporal corre-
lation measurement are adaptively changed in accordance to sur-
rounding edge information of a missing macroblock (MB). The
temporal technique utilizes pixels in the reference frame as well
as surrounding pixels of the lost block. Spatial motion compensa-
tion is applied after MV recovery when the reference frame does
not have sufficient information for lost MB restoration. Simula-
tions demonstrate that the proposed algorithms recover image in-
formation reliably using both spatial and temporal restoration. We
compare the proposed algorithm with other procedures with con-
sistently favorable results.

Index Terms—Block loss recovery, H.263, motion vector (MV)
recovery, MPEG, spatial and temporal error concealment, video
communication.

I. INTRODUCTION

MANY VIDEO coding standards are based on block and
prediction coding techniques [1]–[3]. MPEG and H.263

are examples. When coded data are transmitted and lost due
to channel error or other reasons, corresponding coding blocks
and the frames following are degraded. Several methods have
been proposed to reduce the degradation including automatic re-
transmission request (ARQ) and block recovery/error conceal-
ment. Herein, we consider the latter. Block recovery refers to
any technique wherein missing blocks in the decoder are recov-
ered without retransmission. Such restoration techniques can
be categorized into two types: temporal and spatial. Temporal
block recovery techniques use information in temporally ad-
jacent frames while spatial error concealment procedures ex-
ploit the surrounding spatial neighborhood of a missing mac-
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roblock (MB). Some techniques utilize both temporal and spa-
tial information [4].

The stream in standard video coding includes motion vectors
(MVs) and DCT coefficients of coding blocks. Image degrada-
tion and error propagation resulting in lost MVs require MV re-
covery procedures. Several approaches have been proposed for
MV recovery. Haskell and Messerschmitt [5] suggest setting lost
MVs to zero or utilizing MV information of surrounding blocks.
Al-Mualla et al. [6] suggest a motion field interpolation tech-
nique. In this approach, the MV of each pixel in a missing MB
is computed using bilinear interpolation of MVs of surrounding
blocks. Lam et al. [7] propose a boundary matching algorithm
(BMA) which finds the MV minimizing the difference between
boundary pixels of the lost MB in the current frame and inner
pixels of an MB in the previous frame. A recovery technique of
lost MVs with overlapped motion compensation is suggested by
Chen et al. [8]. Here, a lost MV is first restored by a side match
criterion. The restored blocks are then subdivided into four sub-
blocks, and, finally, pixels in each subblock are computed by
a weighted average pixel value of the originally restored and
neighboring blocks. Other methods exploiting the temporal cor-
relation between frames also have been reported. Zhang et al. [9]
propose a decoder motion-vector estimation algorithm incorpo-
rating temporal correlation between surrounding pixels of a lost
MB and candidate blocks in the reference frame. Tsekeridou and
Pitas [10] suggest MV recovery by a block matching method.
Distances are computed between the above and/or below MBs
of a lost MB and those of candidate MBs in the reference frame.
The best matching candidate is then selected.

In spatial error concealment, numerous methods have been
developed to restore missing blocks. A maximally smooth re-
covery approach is presented by Wang et al. [11]. It produces
a maximally smooth recovery image with boundary pixels by
imposing smooth constraints on the surrounding and restored
pixels. To get reliable results in diagonal edges, Shirani et al.
[12] suggest an image reconstruction algorithm for restoring a
missing block by minimizing spatial differences among four ad-
jacent blocks using linear least squares and linear interpolation.
A recovery method wherein high frequency DCT coefficients
of a missing block and adjacent pixels are set to zero is reported
by Alkachouh and Bellanger [13]. Some alternating projections-
based algorithms have been proposed to sustain edge structure
in surrounding neighborhoods by exploiting neighboring edge
information and corresponding convex sets. Sun and Kwok [14]
suggest use of a spatial interpolation algorithm using projections
onto convex sets (POCS) [15]. Park et al. [16] propose a spatial
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block loss recovery algorithm using the method of alternating
projections.

Temporal MV recovery and fast spatial block loss restoration
algorithms using edge information is presented in this paper.
In spatial restoration, pixels of a missing block are recovered
using the pixel values in neighborhoods. The algorithm morphs
surrounding edge structure into missing blocks. In the tem-
poral case, we suggest use of adaptive temporal correlation
for MV recovery. Adaptive parameter alteration as a function
of surrounding information is introduced. The parameters are
determined adaptively by the edge information of neighbor-
hood blocks. The adaptive matching parameters enable the MV
recovery to be more robust and to utilize surrounding infor-
mation. Pixels both in the reference frame and current frame
are used to find the MB having the minimum difference in the
reference frame. A simple range constraint between restored
pixels is applied after MV recovery when the reference frame
does not have sufficient information for lost MB recovery.

This paper is organized as follows. In Section II, the pro-
posed spatial block loss recovery algorithm is explained. A con-
tent-based adaptive temporal block recovery technique is sug-
gested in Section III. The performance and experimental results
of the proposed algorithms with other existing procedures are
presented in Section IV. Conclusions are drawn in Section V.

II. SPATIAL BLOCK LOSS RECOVERY

A. Glossary for Section II

, , , surrounding blocks of a missing
block.

missing block of pixels.
Recovery vectors. .
Surrouding vectors. .

and Best-matching surrounding block.
Two-dimensional (2-D) DCT operator.
2-D IDCT operator.

.
.
.

.
.

Line of missing pixels in recovery vector,
. 1 or 1 .

Adjacent line to in recovery vector, .
1 or 1 .
. 1 or 1 .

B. Preliminary

A fast spatial content-based adaptive block loss recovery
(CABLR) algorithm based on a spatial recovery method using
alternating projections [16] is presented in this section. In
order to find proper edge orientation by using the line mask
operators [18], the four neighbor blocks, , , , and , are
first defined for the missing block with the size of as
shown in Fig. 1 [16]. According to the edge orientation found
by the line mask operator, the recovery vectors, ,
are determined either as (a) or as (b) in Fig. 2. Case (a) is for
the horizontal line dominating area while case (b) is for the

Fig. 1. Missing block with surrounding neighborhood blocks of correctly
received data: missing block M (grey color), surrounding neighborhood, and
four connected blocks, A, B, C, and D.

Fig. 2. Missing block with surrounding neighborhood and two N � N

recovery vectors r . (a) Recovery vectors r for horizontal line dominating
area and (b) recovery vectors r for vertical line dominating area. [16].

Fig. 3. Missing block with its surrounding neighborhood and an N � N

window to make the surrounding vector s. [16].

vertical line dominating area. For notational simplicity, only
the horizontal line dominating case (a), as shown in Fig. 2,
is considered throughout the paper. A similar and straightfor-
ward explanation of the proposed algorithm can be applied to
the vertical line dominating case. After extracting recovery
vectors, the best matching vector among surrounding vectors,

, is found. The surrounding vectors are
defined as shown in Fig. 3. The best matching surrounding
vectors are and . The recovery vectors and are
projected onto a line in Hilbert space defined by the vector

(1)

where and 2, , , is 2-D DCT
kernel, is the inner product of two vectors, is the
vector norm, and when

.



1068 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 8, AUGUST 2004

Fig. 4. f and g in a recovery vector r and r .

Missing pixels in recovery vectors, , are then replaced by
the pixels in the same relative position of new recovery vectors
in the pixel domain, with , where and is
2-D IDCT operator, , 2. We define as the missing pixels
(line) in the recovery vectors and as the adjacent line to as
shown in Fig. 4. A range constraint is applied between replaced
pixels, , and adjacent the original pixels, . That is, after the
missing pixels in the recovery vectors are replaced, ,

where and is a
constant. The corresponding projection operator is

for
for
otherwise

(2)

where . The projections defined in (1) and (2) are
performed iteratively to restore missing pixels in each recovery
vector. After the missing pixels in the recovery vectors are re-
stored, recovery windows move toward each other to extract new
recovery vectors and to restore the next line of missing pixels as
indicated by the arrows in Fig. 2(a). Using these projections, all
missing pixels in a lost block can be restored.

C. Spatial CABLR Algorithm

Although the iteration algorithm based on alternating pro-
jections [16] gives better results than simple interpolation [13],
[17], the approach is significantly more computationally com-
plex. In order to relieve the computational burden required by
the iterative algorithm [16], several operations used by Park et
al. [16] are modified for the fast spatial CABLR algorithm. For
detecting edge orientation with less computational effort, Sobel
operator masks are adopted instead of line masks used by Park
et al. [16]. Edge gradients and by Sobel operator masks
at [18] are defined by

(3)

and

(4)

where is a pixel value at the point . Total responses
and of the gradient Sobel masks are calculated in four

connected blocks , , , and in Fig. 1 as

(5)

After detecting the edge orientation, the recovery blocks are
determined either by horizontal line dominating area or by ver-
tical line dominating area as shown in Fig. 2. Formulation of ,

, , and are the same as described in Section II-B. For finding
missing pixels in , two projections defined in (1) and (2) are
used in Section II-B [16]. However, here, for computational sim-
plicity, missing pixels of are replaced by the pixels of the
same position from the best matching surrounding block . For

and , this pixel replacement process can be expressed as

(6)

(7)

(8)

By adopting this pixel replacement process, a 0.3–0.6-dB loss in
peak-signal noise ratio (PSNR) is typically experienced when
compared with the projection operation approach in (1).

In order to reduce the computational overhead for optimal
vector matching search, we propose another approach. Specif-
ically, only half of the surrounding vectors
are used. Only the even numbered (or odd numbered) vectors are
first searched. Once the minimum distanced surrounding vector
is found, the two adjacent vectors are also searched for the pseu-
dobest matching surrounding vector. For example, assume that
we have 8 surrounding vectors and we choose only the vec-
tors with even indices for candidates. Among the 4 candi-
date vectors, assume the th vector is the best matched. Then
the th, th, and th vectors are also tested for the
best matched surrounding vectors. When calculating distance
between two image blocks the distance can be computed based
on mean absolute difference (MAD), mean squared difference
(MSD), or the cross correlation function (CCF). When com-
pared with the full search method [16], this fast spatial CABLR
gives approximately 0.1–0.2 dB-loss in recovered image quality.
However, this reduces the search space by approximately half
and results in savings of the same amount in search time.

Next, for removing reconstruction artifacts, a range constraint
between replaced pixels and adjacent known pixels used in (2) is
adopted. After the restoration of missing pixels in the recovery
vectors by pixel replacement and range constraint imposition,
another missing pixels in the next column of row of are re-
stored by moving the recovery window toward the center of the
missing block , as shown in Fig. 2. Similar direct matching
methods are presented by Wang et al. [19]. The proposed algo-
rithm is different in that only a small portion of the surrounding
pixels are used and a smaller area of the adjacent surrounding
blocks is searched. Specifically, when an 8 8-size block is
missing, the size of search space in spatial CABLR is 24 24,
while an 80 80 block is used in [19]. This smaller matching
block size in a smaller search space enables the spatial CABLR
to be implemented more efficiently.

III. SPATIO-TEMPORAL BLOCK LOSS RECOVERY

In this section, we present the spatio-temporal CABLR
algorithm.
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Fig. 5. Edge extention from the reference frame to the missing block.

A. Background for MV Recovery

Among the proposed techniques, approaches [5]–[10], [20]
that adopt spatial and/or temporal correlation have shown rel-
atively promising recovery performance. However, two prob-
lems remain unaddressed. First, the performance may not hold
for different local image structures. Second, propagated errors
from a previous frame on the considered matching area are not
used. Consequently, spatial or temporal correlation methods can
fail to provide correct solutions when the surrounding pixels of
a missing MB are damaged due to error in the pixel itself or the
propagation error from the reference frame. These deficiencies
motivate the CABLR algorithm.

B. Content-Based Adaptive Spatio-Temporal Method

When an MV is missing, the lost MV is recovered using sur-
rounding information of the corresponding missing MB. The
surrounding information includes known MVs or pixels in sur-
rounding neighborhoods.

In this section, an adaptive distortion metric based on the tem-
poral correlation method is introduced. Weights are imposed on
the metric according to the contents of the video sequence. The
structure of local image and propagation errors within a group
of pictures (GOP) are considered as the contents of sequences.

1) Surrounding Image Structure Estimation: In order to get
image structure of a missing block, the edge structure is ex-
amined to determine information contained in the surrounding
neighborhoods of a missing block. Let the vertically connected
surrounding blocks of a missing block with the size of

, be and , as shown in Fig. 5. The magnitudes of gradients
and at all in the blocks, and , respectively,

are computed as

(9)
Only the vertical edge is considered in the proposed algorithm
since blocks in MPEG/H.26x tend to be corrupted horizontally.
Surrounding conditions can be classified into three cases ac-
cording to the computed edge information. is a predeter-
mined threshold.

1) : Since no vertically oriented image structure or
weak edge exists in connected blocks, the surrounding pixels
in and are assumed not to have sufficient information

Fig. 6. Missing blockM and the parts of surrounding neighborhoods.

for the matching criterion. This assumption suggests use of
pixels in the left block, , with less of a charge on the pixels
in and for MV recovery. Stronger weights are imposed
on the pixels in the left block with the assumption that the
pixel information in the left block of the lost MB is more
important than pixels in vertically connected blocks for the
recovery. The pixels in the left block can be considered in
both cases of being correctly received.
2) : In this case, the pixels in and have suffi-
cient information for recovery. With this assumption, stronger
pixel weights in and are required than in and pixels in

and should be used more to measure the distortion be-
tween the damaged blocks and candidates blocks in the ref-
erence frame.
3) and : This is a special case of 2). Let
be the sum of transmitted prediction errors between and
and its reference blocks, and , respectively, as shown
in Fig. 5

(10)

where is the pixel value and is the MB size.
When , where is a threshold, the missing block
and surrounding neighborhoods are assumed to be similar to
the reference blocks, and . It is also assumed that the
edge in and extends to the missing block and, conse-
quently, pixels adjacent to and in the reference frame
also have information of the lost block. Under this assump-
tion, pixels in the missing block, , as well as those in and

, are utilized for the distortion measurement. top and
bottom pixels in the missing block are replaced by pixels
below and above the reference block of and , as shown in
Fig. 5. Edge structure in and should be extended to the
missing MB by this pixel copy. Since the process is simple
pixel replacement using the MVs of two vertically connected
blocks, no computation except that of the the error in (10)
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Fig. 7. Error propagation within a GOP.

is required. In order to avoid additional computation, the ap-
proach is applied only to blocks having uncoded or skipped
surrounding MBs. When or , there is no
vertical edge or similarity in the surrounding neighborhoods
and the pixel copy process is not performed.

In order to make the distortion metric adaptive to the local
image structure after edge extension, the pixels in missing and
surrounding blocks are divided into five areas: , , , ,
and , as shown in Fig. 6. The size of and is ,
the size of and is , and the size of is .

and are pixels in the missing MB. is the MB size
in all cases. The distance measures corresponding to the pixel
( ) of the missing block, as shown in Fig. 6, consist of four
components:

1) the spatial difference between the neighbor of missing
block and pixels from the previous frame;
2) the spatial distance related coefficient from the missing

block ;
3) the image structure related coefficient ;
4) the propagated error related coefficient .

The distance measures, , , , and
between , a pixel position in the missing block

of th frame, and , a relative pixel position to in
the th frame, is defined as

(11)

(12)

(13)

Fig. 8. Areas for setting parameters � . (a) Horizontal edge dominating
blocks. (b) Vertical edge dominating blocks. [16].

(14)

where , , and are weights, is the pixel
value at of the area in the th frame, is the
top-left coordinate of the missing MB, is the absolute value,
and and when and are the search space
in the th frame. of (13) is used only when
surrounding edges are extended to the missing block and and

are available.
The image structure-related coefficient, and

in (11)–(14), are adaptively changed ac-
cording to the edge structure in the surrounding blocks. For
example, and are increased while is de-
creased when a strong edge exists in and . The weights

enable the distortion metric to adapt to the surrounding
characteristic of a missing block. The weights, in
(11)–(14) are denoted as

(15)

where is a threshold, is a constant, and is the
rounding operation.
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Fig. 9. Experiment on a lost block size of 16� 16 pixels of the “foreman” sequence. (a) Original. (b) Damaged image. (c) Image recovered by the Shirani et al.
(PSNR = 25.66 dB). (d) Image recovered by Alkachouh (PSNR = 24.53 dB). (e) Image recovered by CABLR (PSNR = 27.75 dB). (f) Image recovered by Park
et al. (PSNR = 27.94 dB).

Spatial distance related coefficient from the missing block
are also considered in (11)–(14) for a distance between the con-
sidered surrounding pixel and a missing MB. From the assump-
tion that closer pixels in the surrounding block to the missing
MB are more correlated to the lost pixels, higher weights are
imposed on closer pixels to measure distortion. The weights
can be calculated by

(16)

where is the distance between the pixel and the missing block,
and and are predetermined constants. The constant can be
used to reduce or increase the effect of the distance .

2) Error Propagation Estimation: Damaged pixels in an
MPEG block cause error propagation to the following blocks
within a GOP as shown in Fig. 7. In Fig. 7, MBs with a shaded
region in the th frame are damaged MBs. During the decoding
and the post recovery process, damaged MBs in the th frame

are restored using the surrounding blocks. Since an MB in
the th frame references the th frame, error in the th
frame is propagated to the th frame. When the MB
below the error propagated MB in the th frame is also
damaged, the missing MB is restored using the surrounding
error propagated pixels. This causes another recovery error
since damaged blocks in the th frame can be replaced
by restored pixels in the th frame determined by surrounding
pixels in the th frame. Restored errors are propagated
to the th and all frames in a GOP until a new intra
frame is encountered. To reduce the restoration error caused by
the errors in the surrounding blocks, error weights are imposed
on the distortion metric.

Let P be the propagation error state related to the propa-
gation and restoration error at a pixel . The number is
enumerated when the pixel is corrupted and is added to the ref-
erence pixel’s error state P . For example, a pixel’s error state
P is set to zero when the pixel does not have errors, and the
reference pixel’s error state P is added to the number P . A
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Fig. 10. Experiment on a lost block size of 16� 16 pixels of the “table tennis” sequence. (a) Original. (b) Damaged image. (c) Image recovered by the Shirani
et al. (PSNR= 27.54 dB). (d) Image recovered by Alkachouh (PSNR= 27.58 dB). (e) Image recovered by CABLR (PSNR= 28.86 dB). (f) Image recovered by
Park et al. (PSNR = 29.29 dB). Figures show table lines are better recovered by CABLR and Park et al.’s and the result of CABLR is similar as Park et al.’s.

pixel’s error state P is set to one when the pixel is not cor-
rectly received and restored. With this process, propagation and
recovery error occurrence numbers are known. The weights
are imposed in (11)–(14) according to the count of each pixel

when the pixel is correctly received
otherwise

(17)

P (18)

where is a predetermined constant. The weights enable the
distortion metric to adapt to the propagation error in the video
sequences.

3) MV Recovery With CABLR: With the calculation of dif-
ference measures as shown in (11)–(14) for the missing block,
the MV recovery metric is defined as

(19)
where is a recovered MV of the missing block.

4) Spatial Constraint: MV recovery techniques work well to
protect the degradation and error caused by block loss. However,
when there are no similar pixels in the reference frame with
respect to the missing block, MV recovery does not provide an
acceptable solution. This happens especially when the damaged
block is intracoded.Spatial restorationgivesanalternate solution
in this case.Sunet al. [21] suggest an adaptive recovery technique
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Fig. 11. Experiment on slice loss of a P-frame in the “flower garden” sequence. (a) Original. (b) Damaged. (c) ZM (PSNR = 16.96 dB). (d) AV (PSNR =
19.06 dB). (e) BMA (PSNR = 21.65 dB). (f) DMVE (PSNR = 21.63 dB). (g) FB-BM (PSNR = 20.40 dB). (h) CABLR (PSNR = 22.73 dB).

in which temporal recovery or spatial interpolation is determined
according to the spatial and temporal activity of frames. Chen
et al. [8] report overlapped motion compensation. This may,

however, degrade the restored image quality when the reference
frame has accurately restored lost pixel values. CABLR proposes
a simple error adaptive spatial compensation approach.
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TABLE I
PSNR OF SPATIAL RECOVERY IN I-FRAME OF “FLOWER GARDEN,” “TABLE TENNIS,” “FOOTBALL,” “MOBILE,” AND “FOREMAN”

The corresponding error at the recovery MV in (19) is
obtained by

(20)

Assume the pixels from the recovered MV by (19) are not per-
fectly matched to the original values when the error in (20) is
larger than a threshold . That is, in the case of , after
recovering the MV, the pixel values in the recovered block are
spatially constrained by (2).

The constraint is applied from the top-most and bottom-most
pixels to center pixels in the same manner as the spatial case.
This range constraint limits the difference between missing and
adjacent known pixel values. This method is applied only after
the lost MV is recovered.

5) Pseudocode of CABLR Algorithm: The steps of the
CABLR are 1) determination of vertical edge existence in
two connected MBs and setting the weights , 2) extension
of the vertical edge to the missing MB when there is a strong
vertical edge and small prediction error in the connected blocks,
3) estimation of restoration and propagation error, and setting
the weights, , and 4) spatial compensation when . Here
is pseudocode.

Algorithm
Compute compute gradients, and ,
in and , respectively
if and and
copy pixels from the reference

frame
endif
set weights, , according to and
set weights, , according to the distance
between pixel and the missing block
estimate propagation and recovery error
within the GOP
set weights, , according to the error
number,
if
apply a spatial constraint
endif
End.

IV. EXPERIMENTAL RESULTS

The proposed algorithm is tested on 352 240 pixel size
flower garden, football, calendar and mobile, table tennis, and
176 144-pixel size foreman sequences. The foreman sequence

is encoded at the rate of 128 Kbit/s and other sequences are en-
coded at the rate of 1.15 Mbit/s by MPEG-2 encoder. The frame
rate is 30 fps in all cases. The frame number of the GOP is 12,
and the B frame number between I and P frames is 3. In the
I-frame, we consider a missing MB surrounded by known MBs
on the assumption that MBs are interleaved on packing [22]. We
examine a missing MB from every four MBs for maximum error
experiment and apply spatial error concealment to the I-frames.
The proposed spatial algorithm is compared with other proce-
dures such as Shirani et al.’s technique [12] and Alkachouh and
Bellanger’s scheme [13].

In the P- and B-frames, we consider a missing slice with the
assumption that a synchronization marker is inserted in the first
MB of every row of the MB. Temporal error concealment is ap-
plied in this case. We compare the proposed method with ex-
isting algorithms such as zero MV (ZM), average MV (AV)
[5], BMA [7], Zhang et al.’s algorithm [decoder motion-vector
algorithm (DMVE)] [9], and Tsekeridou and Pitas’ algorithm
[forward-backward block-matching (FB-BM)] [10].

Spatial block loss recovery is tested in the I-frames of the
sequences. Each initial missing pixels of recovery vector is set
to the adjacent known pixel in the same vector. Missing block
size is 16 16 ( ) and MSD is used. Parameter in (2)
are set to the maximum value of the differences between two
adjacent pixels in the same column in the blocks with shaded
region of Fig. 8(a) and (b) as in [16]. The cases of (a) and (b) in
Fig. 8 are for the horizontal edge and vertical edge dominating
area, respectively. In the case of Fig. 8(a), is

(21)

where is the top-left pixel of a missing block, . The
peak signal-to-noise ratio (PSNR) [23] is a measure of the re-
stored image quality, and is given by

(22)

where and are the value of original and restored image of
pixels, respectively. Figs. 9 and 10 shows the spatial block loss

recovery in the intra frame of foreman and table tennis. Images
(a) and (b) of Figs. 9 and 10 are the original and the damaged
intra frame, respectively. Images (c) and (d) of Figs. 9 and 10 are
the restored by Shirani et al.’s and Alkachouh and Bellanger’s



PARK et al.: CONTENT-BASED ADAPTIVE SPATIO-TEMPORAL METHODS 1075

TABLE II
AVERAGE PSNR OF TEMPORAL RECOVERY IN P- AND B-FRAMES OF “FLOWER GARDEN,” “TABLE TENNIS,” “FOOTBALL,” “MOBILE,” AND “FOREMAN”

Fig. 12. PSNR versus frames. (a) Flower garden. (b) Foreman.

algorithm, respectively. Images (e) and (f) show restored images
by the proposed method and [16]. The result of the proposed
method is approximately 0.2–0.5 dB lower than that of [16],
and typically requires 40% less computation compared to [16]
when the number of iteration is 1 for [16]. This is because Park
et al.’s algorithm requires full search and projections while the
proposed algorithm does not. Table I summarizes the PSNR of
restored intra frames in all sequences.

Temporal recovery is tested in damaged blocks of the P and
B frames. Parameters in the proposed algorithm are set to

, , , and . Parameters for weights
are set as , , , and .

and 1.0 when and , respectively, since
altering the values of parameters concerning are observed as
having not much an affect on the reconstruction results. For the
surrounding edge extension, is set to 6000 and it is applied
only when a missing block is uncoded or skipped. The whole
missing block, including edge extended pixels, are replaced with
the reference block after MV recovery. is set to 1700 for the
spatial constraint. ,
is used for the search space in (19), where is the MB size
( ). Tested parameters are determined by experiments
and the same parameter values described are used for the test of
all sequences. In BMA, a full search method is applied instead
of the five candidates search. In DMVE, two pixel lines the left
of, above, and below a missing MB are used for MV search.
MAD is used for the distance measure in all cases.

Fig. 11 shows the test on slice error in a P-frame of flower
garden. Images of (a) and (b) in Fig. 11 are the original and
the damaged image, respectively. Images restored by ZM, AV,
BMA, DMVE, and FB-BM are shown in (c), (d), (e), (f), and
(g), respectively. Images restored by CABLR are shown in (h)
of Fig. 11.

Table II summarizes the average PSNR of the restored frames
in all sequences. Tests are performed under the same condi-
tions as previously mentioned, and the same slice loss pattern is
used as shown in Fig. 11. Fig. 12(a) and (b) show PSNR versus
the first 30 reconstructed P- and B-frames of flower garden
and foreman, respectively, by different methods. Frame num-
bers for tests are given with sequence names. The table shows
that CABLR results in higher PSNR than other algorithms in all
cases.

V. CONCLUSION

In this paper, we present new spatial and temporal block loss
recovery algorithms. In the spatial algorithm, two pixel
recovery vectors are extracted using a Sobel mask operation. Ex-
tracted vectors, including known and unknown pixels, are com-
pared with surrounding pixels. The best matching block
of each vector is found using a fast search method. The values of
unknown pixels in the pixel vectors are replaced with the pixels
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in the same position of the best matching block. For pixel conti-
nuity, a range constraint is applied between the newly replaced
pixels and the adjacent known pixels. After missing pixels in the
recovery vectors are restored, the new pixel recovery
vectors are extracted and, consecutively, all missing pixels are
thereby restored.

In the temporal CABLR algorithm, vertical edge detection
is applied in the vertically connected surrounding blocks of a
missing MB. Weights to the distortion metric are adaptively
determined according to the surrounding information. When
there is a strong vertical edge in connected blocks, vertically
positioned pixels are more heavily weighted for MV recovery.
In the converse case, pixels in the left block are more impor-
tant. When surrounding pixels have a high error propagation
state, lower weights are also imposed on these pixels. When
the previous frame does not have sufficient information for the
missing MB, simple spatial compensation is applied after MV
recovery.

The proposed algorithms are tested on several standard
MPEG sequences. Spatial CABLR is applied on I-frames
and temporal-spatial CABLR is tested on P- and B-frames of
MPEG sequences. CABLR utilizes local image structure and
error propagation characteristic of video coding standards for
error concealment. The reconstruction quality by the proposed
algorithms is consistently higher than other techniques tested.
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