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Abstract— We introduce a novel layered fuzzy architecture 

that avoids rule explosion.  Unlike a single layer union rule 
configuration (URC) fuzzy system, a layered URC fuzzy system 
can approximate any surface without the need of burdensome 
“corrective” terms.  Further, we show that the URC fuzzy 
system is a generalized layered perceptron—an insight that 
allows one to choose interconnection weights in an intuitive 
manner with very basic problem knowledge.  In some cases, 
training may not be necessary.  Further, the fuzzy linguistic 
meaning of variables is preserved throughout the layers of the 
system.  The universal approximation property of this 
architecture is discussed and we demonstrate how a layered 
URC fuzzy system solves a simple regression problem.   
 

Index Terms—union rule configuration, fuzzy logic, rule 
explosion, universal approximation, layered perceptron 
 

I. INTRODUCTION 

For many years researchers have developed neural 
networks and fuzzy systems for a wide range of 

applications.  Recently, much effort has been focused on 
neuro-fuzzy systems in an attempt to activate the desirable 
properties of both types of systems in a single network [1-4].   

We present a novel layered union rule configuration 
(URC) fuzzy system architecture that bridges an important 
gap between fuzzy systems and neural networks.  This 
layered fuzzy architecture is a generalized form of the 
layered perceptron and encompasses virtually all feed-
forward architectures including those that incorporate 
sigmoids, radial basis functions, or other kernels.  By 
viewing the layered URC fuzzy system as a universal 
architecture, knowledge of fuzzy systems and layered 
perceptrons combine to give each weight a significant and 
intuitive meaning.   

Section 2 contains of a brief review of URC fuzzy systems.  
A discussion of the layered URC fuzzy system architecture 
follows in Section 3.  The necessary number of layers, as 
well as the purpose and construction of each layer, is 
discussed.  Further, the fuzzy linguistic meaning of 
intermediate, inter-layer, variables is examined.  A discussion 
on the universal approximation property of the layered URC 
fuzzy system is also included.  Practical implementation 

issues are discussed in Section 4 as well as a simple 
regression example.  Concluding remarks follow in Section 
5. 

 

II. A REVIEW OF THE UNION RULE CONFIGURATION 
Conventional fuzzy systems are composed of multi-

antecedent rules connected by the intersection operator.  The 
output formula for this type of system, with sum product 
logic and multidimensional rule table F, is given by 
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where the value of membership of the input  to the a  

subset of the jth antecedent is 
jx thj

)(, jaj x
j

µ ,  is the number 

of subsets of the jth antecedent, and the a  index F.  

Notice that when the number of antecedents is increased, this 
system is burdened by an exponential increase in the number 
of fuzzy rules, giving rise to rule explosion. 
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In contrast, W. E. Combs et al. propose a novel fuzzy 
system architecture where the union operator connects single 
antecedent rules [5].  A recent paper by Weinschenk et al. [6] 
formalizes the output formula for this type of system for sum-
product logic and centroid defuzzification as 
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where 

jiy ,
 is a consequent center of mass and )(, iji xµ  is 

the value of membership of the input, , to the jth subset of ix
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the ith antecedent.  This new architecture has the property 
that a linear increase in the number of antecedents results in a 
linear increase in the number of fuzzy rules—hence rule 
explosion is averted.  W. E. Combs et al. refer to this novel 
architecture as a union rule configuration (URC) while the 
conventional fuzzy architecture is referred to as an 
intersection rule configuration (IRC). 
  In [6], Weinschenk et al. explore the relationship between 
IRC and URC fuzzy systems and prove that IRC and URC 
fuzzy systems are identical if three constraints are met.  First, 
the IRC rule table must be additively separable.  A multi-
dimensional rule table F is said to be additively separable if 
 

Pvvv ⊕⊕⊕= 21F ,                       (3) 
 
where iv  is a projection vector corresponding to the ith 

antecedent of a multi-dimensional IRC rule table F and ⊕  is 
the outer sum operator. 1  Similarly, a function g is additively 
separable if 
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It is our experience that many IRC rule tables used in 
industry meet the criterion given in (3).   

Secondly, the antecedent membership functions must be 
constructed such that 
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Although this second requirement is necessary in order to 
achieve strict equality between IRC and URC fuzzy systems, 
in practice it is often unnecessary and even undesirable.  In 
an IRC fuzzy system, if a fuzzified input is reduced to noise 
the system reacts poorly because each antecedent is weighted 
equally.  In the corresponding URC fuzzy system, if (5) is not 
enforced, the URC fuzzy system acts robustly to missing 
inputs by discounting low magnitude antecedents. 
 Finally, equivalence between IRC and URC fuzzy systems 
requires that 
 

),()(, jijvPy iji ∀= .        (6) 

 
Thus, elements of the projection vectors are related to 
elements of the URC rule table by a scaling constant, P. 
 Notice that substitution of (6) into (2) yields 

 
1 An outer sum is similar in nature to an outer product in that the outer 

sum of a set of P vectors results in a P dimensional matrix.  The key 
difference is that an outer sum forms the P dimensional matrix via sums of 
elements whereas the outer product uses multiplication as the constructor. 
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Thus, if one wants to retain the desirable property of the 
URC where low magnitude inputs are discounted, the 
constant K may be thought of as a scale factor that is either 
applied to the projection vectors or to the antecedent 
membership functions.  Notice that when (5) is enforced, K is 
unity and strict equality between the IRC and URC exists. 

When the desired IRC rule table is additively inseparable, 
equality between IRC and URC fuzzy systems is still 
achievable by adding corrective terms to the URC fuzzy 
system.  Corrective terms are point masses placed on the 
output axis that counter-balance regions in the domain space 
inaccurately represented by a separable IRC rule table.  
Corrective terms follow in IRC structure, each corrective 
term corresponding to a multi-antecedent rule.  One 
corrective term is required for each element of the IRC rule 
table that is inaccurately represented by the separable IRC 
rule table implemented by the URC fuzzy system.   

It is well known that an IRC fuzzy system is a universal 
approximator [7-9].  Due to the equality of IRC and URC 
fuzzy systems, it follows that a URC fuzzy system, with 
corrective terms where necessary, is a universal approximator 
as well.  However, depending on the nature of the additively 
inseparable IRC rule table, so many corrective terms may be 
required that the URC fuzzy system no longer offers 
significant computational savings over the analogous IRC 
fuzzy system.  Thus, in the next section we present a layered 
URC architecture that maintains the universal approximation 
property in the absence of corrective terms. 

 

III. LAYERED URC FUZZY SYSTEMS 

A. A novel link between fuzzy systems and neural nets 
In the interest of computational efficiency, it is advisable 

to avoid adding corrective terms to a URC fuzzy system.  
However, it is important to maintain the universal 
approximation property.  With these goals in mind, we 
examine a layered URC fuzzy system without corrective 
terms.  Fig. 1 depicts a 2-layer URC fuzzy system with three 
subsets per antecedent, where the outputs of one URC fuzzy 
layer serve as the inputs to the next.  Arrows represent 
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weighted interconnects, where the interconnect weights are 
simply elements of the projection vectors as specified in (7).  

  
 

Fig. 1.  A 2-layer URC fuzzy system with three subsets per antecedent. 
 
Notice that the 2-layer URC fuzzy system in Fig. 1 appears 

similar in nature to a feed-forward neural network.  The only 
major difference is that the output of each node is fed into a 
set of membership functions instead of a common sigmoid or 
other kernel function.  Fig. 2 shows another URC fuzzy 
system, with only one subset per antecedent, where a 
common sigmoid replaces all of the membership functions.  
The first set of sigmoids make up an input layer, the three 
summations followed by sigmoids make up a single hidden 
layer, and the final two summations compose an output layer.  
It is apparent that the layered URC fuzzy system (without 
corrective terms) is a generalized feed-forward neural 
network.  Notice that the use of sigmoids, radial basis 
functions, and other kernels common to neural networks can 
be readily interpreted as different types of membership 
functions. 

 

 
 
Fig. 2. A 2-layer URC fuzzy system with one subset per antecedent and the 
common sigmoid for all membership functions.   
 

An interesting parallel exists between the layered URC and 
the layered perceptron.  Ever since the classic objection put 
forth by Minsky and Papert [10], it was known that a single-
layer perceptron (no hidden layer) is not a universal 
approximator.  Similarly, a single-layer URC fuzzy system 
without corrective terms is also not a universal approximator.  

However, since the layered perceptron’s architecture is 
subsumed by the 2-layer URC fuzzy system, and a 2-layer 
perceptron (containing one hidden layer) is known to be a 
universal approximator [11], a 2-layer URC fuzzy system 
must also be a universal approximator.  Importantly, this 
means a 2-layer URC architecture maintains the universal 
approximation capacity in the absence of corrective terms.   

 

B. Rotations of Fuzzy Variables 
Since a 2-layer URC fuzzy system without corrective terms 

is a universal approximator, it follows that a 2-layer URC 
fuzzy system can perform the same function as an IRC fuzzy 
system that has an additively inseparable rule table.  As 
discussed previously, each individual URC layer can only 
solve problems involving an additively separable IRC rule 
table.  Therefore the first URC layer must take inputs, which 
relate to the desired output through an additively inseparable 
rule table, and convert them (via an additively separable IRC 
rule table) to a set of intermediate variables that relate to the 
output through an additively separable rule table.  To avoid 
confusion, from this point on we refer to the desired 
(potentially additively inseparable) IRC rule table as the 
primary rule table.  Further, the primary rule table relates the 
primary inputs to the primary outputs.  The additively 
separable IRC rule tables that govern the behavior of the first 
and second URC layers are referred to as first and second 
layer rule tables, respectively.  For the following discussion, 
it is useful to think of the primary rule table as containing 
samples from a multi-dimensional surface where each 
element of the primary rule table is the center of mass of a 
consequent subset.     

Fundamental tomography dictates that any surface can be 
represented to an arbitrary accuracy via a superposition of 
projections where, by definition, the outer sum of orthogonal 
projections forms an additively separable matrix [12].  Thus, 
the primary rule table is expressible as a superposition of 
additively separable surfaces, each of which is formed from a 
different pair of orthogonal projections that occur at different 
angles relative to the primary inputs.  Importantly, each of 
these additively separable surfaces may be implemented with 
a URC fuzzy system that relates rotated primary inputs to an 
intermediate output.  However, since the terminal operation 
of a URC layer is summation, superimposing the intermediate 
outputs of a set of URC fuzzy systems is equivalent to 
constructing one large composite URC layer that relates all of 
the rotated primary inputs directly to the primary output.  
This composite URC fuzzy system effectively implements 
the second layer rule table and constitutes the second layer of 
a 2-layer URC fuzzy system. 

The first layer of the 2-layer URC fuzzy system must 
effectively rotate the primary inputs to the necessary angles.  
A rotation in two dimensions is given by 
 

)sin()cos( θθθ yxr += ,        (9) 
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where θ  is the angle of rotation.2  A URC fuzzy system 
implements a desired rotation by selecting its additively 
separable rule table to be samples from the surface defined by 
(9).3  Thus, the first layer rule table is carefully chosen such 
that the necessary rotated primary inputs are generated.  In 
general, the optimum rotation angles can be determined by 
standard search techniques [14]. 

Interestingly, rotated fuzzy variables do retain fuzzy 
linguistic meaning.  In the case of 4π±  radian rotations, 
the rotated fuzzy variables give respective measures of the 
midpoint and separation between the membership functions 
of the two antecedents.  In general, rotations through other 
angles yield a weighted measure of the midpoint or 
separation between membership functions.   
  The layered URC provides a maximum computational 
savings when the primary rule table is accurately represented 
by a small number of projections.  In the worst case, when 
the primary rule table contains random numbers, the layered 
URC fuzzy system will actually require more resources than 
the analogous IRC fuzzy system.  However, it is our 
experience that many additively inseparable IRC rule tables 
found in the literature can be accurately characterized with 
only a few projections. 
 

IV. IMPLEMENTATION ISSUES AND A REGRESSION EXAMPLE 
To gain a better understanding of the behavior of 2-layer 

URC fuzzy systems, we examine a toy problem with an 
inseparable rule table—the fuzzy XOR.  A fuzzy XOR is 
defined as a function  on  that satisfies 
the boundary conditions  

),( yxz ]1,0[, ∈yx

 
0)1,1()0,0( == zz         (10) 

 
and 
 

1)0,1()1,0( == zz               (11) 
 
[15].  One such function is given by 
 

)5.0)(5.0(25.0),(1 −−−= yxyxz .    (12) 
 

An IRC fuzzy system can be constructed that approximates 
(12) by choosing a set of ordered membership functions for 
both inputs and then forming a rule table from samples of the 

surface defined by (12).4  However, since (12) is not 
additively separable as defined by (4), the resulting IRC rule 
table will be not be additively separable.  Thus, a single-layer 
URC fuzzy system requires corrective terms for accurate 
approximation of (12) and, in this case, so many corrective 
terms are required that the single-layer URC fuzzy system is 
more computationally expensive than the analogous IRC 
fuzzy system. 

 
2 In the interest of clarity we discuss a rotation in 2D although in general, 

rotations can be performed in higher dimensional spaces. 
3 We point out that rotations need not be implemented with a URC layer.  

Instead, the rotations can be performed on normalized inputs in a 
preprocessing step, in which case a single layer URC fuzzy system, with no 
corrective terms, is sufficient for universal approximation.  This method is 
reminiscent of Yoh-Han Pao’s functional link neural network [13]. 

However, if (12) is rotated by 4π  radians about the point 
, one obtains the new surface, )5.0,5.0(

 
( ) ( 22

2 5.025.025.0),( −−−+= yxyxz ) .   (13) 
 
This rotated fuzzy XOR surface is additively separable as 
defined by (4), thus an IRC rule table formed from its 
samples will also be additively separable.  It is therefore 
apparent that a 2-layer URC fuzzy system can approximate 
(12) if the first layer rotates the inputs by 4π±  radians and 
the second layer implements the separable rule table formed 
from samples of (13).  In general, more complex surfaces 
require more than one pair of orthogonal projections. 

 The first layer of the 2-layer URC system is constructed 
such that each antecedent has three subsets: LOW, MED, and 
HIGH.  The first layer has two consequents, the first of 
which represents a rotation of the inputs by 4π  radians 
while the second represents a rotation of the inputs by 4π−  
radians.  Recall that an additively separable IRC rule table 
that performs these rotations is found by sampling (9).  The 
URC interconnect weights are then identified from the 
additively separable IRC rule table via (3) and (7).  To ensure 
that the rotated inputs 4πr  and 4π−r  remain on [ , it is 
necessary to shift and scale the surface in (9) such that no 
consequent subset has a center of mass outside [ .  The 
URC interconnect weights for the first layer are given in 
Table 1.  The antecedent membership functions are shown in 
Fig. 3. 

]1,0

]1,0

 
 

0 10.5 

M H 
1.0 

L 

 
Fig. 3. The antecedent membership functions for the first layer of the 2-

layer URC fuzzy system.  Both antecedents use the same set of membership 
functions.  Notice that the membership functions sum to unity. 

 
The surface in (13) is sampled in order to obtain the 

second layer rule table.  The URC interconnect weights are 

 
4 Each sample represents the center of mass of a consequent subset. 
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obtained from the second layer rule table via (3) and (7).  
Table 2 contains interconnect weights for the case where 
each antecedent has 3 subsets.  The antecedent membership 
functions for the second layer are the same as those used in 
the first layer. 

 
 

 x y 
 LOW MED HIGH LOW MED HIGH 

4πr  0 0.25 0.5 0 0.25 0.5 

4π−r  0 0.25 0.5 0.5 0.25 0 
 
Table 1.  The interconnect weights for the first layer of the 2-layer URC 
fuzzy system. These weights implement a +/- π/4 degree rotation of the 
inputs. 
 
 

4πr  4π−r  

LOW MED HIGH LOW MED HIGH 
0 0.5 0 0.5 0 0.5 

 
Table 2.  The interconnect weights for the second layer of the 2-layer URC 
fuzzy system.   
 

  Fig. 4 depicts the output surface for the 2-layer URC 
fuzzy system for the case where the second layer antecedents 
have three subsets each.  For the purpose of comparison, the 
output surface for the IRC fuzzy system that directly 
approximates (12) is shown in Fig. 5.  The IRC fuzzy system 
implements an inseparable 3x3 rule table (Table 3) obtained 
by sampling (12).  The IRC fuzzy system uses the same 
triangular membership functions depicted in Fig. 3. 

 
 

Fig. 4.  The 2-layer URC output surface.  Each antecedent in the second 
layer has three subsets each. 

 
Notice that the output surfaces shown in Figures 4 and 5 

have the same general shape, yet are not identical.  This is an 

interesting phenomenon whose explanation lies in the 
inherent structure of the URC fuzzy system.  The IRC fuzzy 
system forms an output surface by linearly interpolating 
between samples from the original surface given in (12).  In 
contrast, the URC fuzzy system linearly interpolates between 
samples from the rotated surface given in (13) and then 
rotates the result back to the proper orientation.  Thus, both 
output surfaces are legitimate, yet different, approximations 
of (12).  In fact, had the desired surface been that shown in 
Fig. 4 and not that of (12), the corresponding IRC and URC 
fuzzy systems would still yield the same output surfaces 
shown in Figures 4 and 5, yet it would be the IRC fuzzy 
system that is less accurate! 
 

 
 
Fig. 5.  The IRC output surface.  Each antecedent has three subsets. 
 
 

x  
LOW MED HIGH 

LOW 0 0.5 1 
MED 0.5 0.5 0.5 y 
HIGH 1 0.5 0 

 
Table 3.  The additively inseparable IRC rule table used to directly 
approximate (12). 
    

It is important to note that the accuracy of both the IRC 
and URC approximations can be improved by increasing the 
number of antecedent subsets.  However, since IRC fuzzy 
systems are crippled by rule explosion, the addition of 
antecedent subsets to an IRC fuzzy system can be costly.  
Alternatively, antecedents are easily added to the second 
layer of the 2-layer URC fuzzy system to improve 
approximation accuracy.  In fact, each new additional 
antecedent subset results in one new interconnect weight.  
Figures 6 and 7 depict approximations for the cases where 
the 2-layer URC fuzzy system has 5 and 9 subsets per 
antecedent in the second layer, respectively.  Notice that as 
more antecedent subsets are added to the second layer, the 
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accuracy of the approximation improves.  Table 4 shows the 
maximum absolute error (XAE) and the mean absolute error 
(MAE) for the three URC approximations. 

 
Fig. 6.  The 2-layer URC output surface.  Each antecedent in the second layer 
has five subsets each. 
 

 
Fig. 7.  The 2-layer URC output surface.  Each antecedent in the second layer 
has nine subsets each. 
 
 

# of subsets / antecedent in the second layer  
3 5 9 

XAE 0.1250 0.0312 0.0079 
MAE 0.0410 0.0102 0.0026 

 
Table 4.  The XAE and MAE for the three URC approximations.  Notice the 
error quickly diminishes as the number of subsets per second-layer 
antecedent increases. 

V. CONCLUSION 
Many IRC fuzzy systems have additively separable rule 

tables, in which case a single-layer URC can be used to avoid 
rule explosion and provide the exact same functionality as the 
original IRC fuzzy system.  However, for those IRC fuzzy 

systems with additively inseparable rule tables, rule 
explosion can still be avoided in most instances through the 
use of a 2-layer URC architecture.  Although a 2-layer URC 
fuzzy system yields a slightly different output surface than 
the corresponding IRC fuzzy system, both output surfaces are 
valid representations of the IRC rule table.  Indeed, as the 
number of antecedent subsets increases, the difference 
between the 2-layer URC output surface and the IRC output 
surface diminishes to zero.  Finally, we invite the reader to 
design a URC fuzzy system and find out first hand how rule 
explosion is avoided. 
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