Sonar Sensitivity Analysis Using a Neural Network Acoustic Model Emulator

Megan U. Hazen
Warren L.J. Fox
Chris J. Eggen

University of Washington, Applied Physics Laboratory

1013 NE 40™ St., Seattle, WA 98105
Email: megan(@apl.washington.edu

Abstract- A technique is reviewed for training
artificial neural networks to emulate the complicated input-
output relationships of an acoustic medel. This neural
network acoustic model emulator is intended for use in a
sonar controller, which may require a large number of
forward model runs to determine the optimal sonar setting in
a given envirenment. The neural network can supply sonar
performance predictions to high enough fidelity for use in a
controller, but with a much reduced computational burden
compared to the original acoustic model. Among the
challenges of developing control guidelines for highly variable
littoral areas is the difficulty in understanding the sensitivity
of acoustic response to smal changes in environmental or
sonar control-parameters. An effective sensitivity analysis
tool would allow users or automatic contrel algerithms to
place a control emphasis on those parameters that have the
greatest effect on sonar response, Additionally, an improved
understanding of acoustic sensitivity may lead to
improvements in model and controller development. In this
paper, the neural networks, originally developed for
autematic sonar controllers, are nsed to explore the sensitivity
of the system. Given a properly trained neural network,
sensitivity measures can be directly calculated. The nenral
networks ¢an also be used to vispalize the effect of changing
environmental and control parameters. A variety of ways in
which the neural network structures can be used to examine
the sensitivity of the sonar system will be presented.

1. INTRODUCTION

Naval sonar systems continue to evolve and become more
capable, while at the same time becoming more complex to
operate. With the emergence of littoral areas as the prime
- regions of interest, characterized by underwater accustic
environments that change quickly in both the temporal and
spatial domains, the- combination of ehvironmental and
sonar system complexities has placed an increasing burden
on sonar operators. In order 1o aid operators, it has become
necessary to develop automatic sonar centrollers that can
automatically optimize sonar line-ups for a specified
environment.

The generat design of such an automatic sonar controller is
an optimization loop that requires large numbers of
evaluations of sonar behavior.  Traditionally, these
evaluations are done using a physically based sonar model.
Traditional models offer high fidelity assessments, but
require large amounts of time for each evaluation, and are
impractical for effective controllers. It is desirable,
therefore, to develop a model that can be evaluated very
quickly, but which approaches the fidelity of a traditional
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model. We have developed a surrogate model using
artificial feed-forward neural networks (ANNs). This
model responds in a small percentage of the time required
for a traditional model, and provides the user with data that
is sufficiently accurate for use in an automatic controller.

In addition to the basic model evaluations, it can be
beneficial to be able to determine the sensitivity of the
acoustic system. This type of analysis has many varied
applications, which will be discussed in this paper.
Currently, sensitivity analysis can be done by taking
analytical derivatives on a physical model, or by evaluating
the mode! many times to plot parametric curves. However,
it may be impossible to take analytical derivatives of
complex non-linear models, and it is computationally
expensive to compute multiple model runs. We propose
extending our current ANNs to compute the sensitivity in a
variety of ways.

In this paper we will present an overview of the neural
network development and performance. After a brief
discussion of previous work, we will describe a variety of
applications for semsitivity analysis, along with potential
methods for calculating the requisite values.

II. NEURAL NETWORK ACOUSTIC MODEL
EMULATION

A neural network acoustic model emulator was developed
to meet the-goal of speeding up acoustic model evaluations
while maintaining sufficient accuracy for-a controlier to~
determine optimal sonar settings. This contribution is
important because the controller architecture is an
optimization loop whose objective function depends on
acoustic model evaluations. This requires many model
runs for a given environment in order to assess which sonar
mode is best. The traditional physically based models are
too computationally intensive to allow a controlier to run in
real time. A general discussion of this type of regression
neural network may be found in [1].

The training begins by statistically characterizing a given
operational area. Probability distribution functions are
generated for the various environmental parameters that are
required as input to a conventional acoustic model. Then, a
large number of environmental and system parameter
“realizations” is generated, on which the conventional
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acoustic model is ran. We have used up to 40,000 model
runs in this training ensemble.

A neural network architecture is then established where the
medel inputs are placed on the input layer of neurons, and
the acoustic model output products are ptaced on the output
layer, with typically three hidden layers. The neural
networks then are trained using a version of the back-
propagation algorithm. Our modifications to the back-
propagation algorithm are detailed in [2,3].

The trained neural networks were then used to calculate the
objective function for the controller optimization. The
neural networks respond in a small fraction of the time
necessary for the traditional acoustic model. In testing,
ANNs emulated the physically based model with enough
fidelity for the controller to choose appropriate sonar
" settings.

1Il. PREVIOUS SENSITIVITY WORK

There is little published work in the area of neural network

' _ sensitivity analysis, but some papers have proposed

successful applications of the technology. Most
commonly, the authors use perturbation analysis to look at
the relative impact of different ifiput parameters on the
output values [4, 5]. This allows them to prune the input
vector size, which increases the efficiency of ANN training
and performance. Sometimes this technique also leads to
improved fidelity of the output.

In one paper it is suggested that sensitivity information can
be used to imiprove the back-propagation algorithm.
Specifically, the algorithm is adjusted to take into account
not only the erfor in the output value; but also the error in
the sensitivity. The analysis of this work suggests that
minimizing the latter error can significantly reduce the
number of training vectors required to cover the model
space, thereby reducing training time significantly. This
work is detailed in [6].

V. SENSITIVITY APPLICATIONS
- A Neural Network Development

It has been shown that sensitivity information can depict
the relative impact that different input parameters have on
neural network output, By pruning the input vector, that is,
removing those parameters that have the smallest effect on
the output, we can decrease training and evaluation time.
In some cases, reducing the size of the input vector can also
provide higher fidelity output of the neural network {this is
assumed to be because extraneous input values are not
correlated with the outputs and can ‘confuse’ the ANNs).

We have done some work with perturbation analysis,
which can be applied to optimizing the structure of the
neural network input vector [2]. We begin this analysis by
choosing an operating point. We then vary each input

parameter in tum, holding all cther input parameters
constant. The input is modified by -2.5% and 2.5% of its
entire range.

A sample output of this perturbation analysis is seen in Fig,
1. In this figure the bar graph shows the relative
sensitivities of the different input parameters (DE
corresponds to the vertical steering angle of the sonar, the
other parameters are self-explanatory). In the four columns
of figures to the right, each row corresponds to the input
parameter in the lefirnost bar graph. The first and third
columns show sonar performance in a vertical slice of the
ocean when the input is perturbed by -2.5% and 2.5%
respectively. The second and fourth columns show the
difference between the perturbed output and the initial
output. I[n this example, the two shallowest sound speeds
have the highest sensitivities, i.c., the performance maps
change the most when these sounds speeds are changed a
relatively small amount.
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Fig. 1. Sample perturbation analysis for a sonar
performance ANN.

We have developed another type of sensitivity analysis that
may be useful in this application. In this analysis the’
output is the ‘total” sensitivity of the neural network to'each
input parameter. These values are obtained by summing
the ANN weights connected to each input parameter and
provide a measure of the total possible impact of the given
input parameter. The total sensitivity of the input i may be
found as skown in (1.1).

;=2 0L (L)
where
0,(0=Y" O,(-D*w,
l<={<=L

These equations hold for a neural network with L-1 hidden
layers. The starting output values 0;0) = 1 in the case of
i=fj; O otherwise. The resulting sensitivity can also be
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normalized by dividing by the total number of weights in
the neural network.

Fig. 2 shows a comparison of perturbation analysis to the
total sensitivities for a sample reverberation network (i.e.,
reverberation is the acoustic model product on the output
layer of the neural network as opposed to overall
performance). The total sensitivity analysis highlights
slightly different input elements because it does not take
into account the non-linear functions contained within the
neural network. The advantage to the total sensitivity
analysis is that it does not depend on the operating point.
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Fig. 2. Comparison of perturbation analysis sensitivities
(on the left) to total sensitivities for a reverberation ANN.

B. Efficient Controller Decisions

One of the problems with sonar control is that it is usually
a joint optimization problem where more than one
parameter, can be modified. In some cases it is expensive
to alter one or more of the parameters. Sensitivity
information (like that provided by perturbation analysis)
would allow the controller to make intelligent decisions
- about the. necessity. of altering one parameter or another. ‘If
the sensitivity analysis showed, for example, that the
acoustic behavior was highly sensitive to transmitter depth
. the controller may suggest altering the depth despite the
relative difficulty of this action. Altematively, if the
system proved to be insensitive to transmitter depth the
controfler may opt to work with the current depth.

C. Improved Optimization Algorithms

The current optimization algorithms used for sonar control
are based on brute force searches, or on stochastically
based optimization techniques. It is known that, for many
systems, steepest-descent type algorithms may converge
more quickly than the former types of optimization. The
problem with steepest descent algorithms is that they
require gradient information, which is difficult to obtain.
This results in another application for sensitivity analysis,

as it provides gradients at the operating point. It is possible
to use this gradient information to implement steepest
descent algorithms that use neural networks for their model
evaluations.

Previous work has supplied a method for calculating the
gradients of a neural network for a given operating point.
One way of doing this is to use the previously described
perturbation analysis. Another way, which provides more
accurate gradient information, may be found in [7].

The latter method calculates the gradient directly, using
only the weights in the neural networks. For each point in
the input space we can calculate the gradient py(0) of the
th output neuron with respect to the jth input neuron as
shown in (1.2).

oa, (L)
L= 1.2
Py~ % (0 12
where
Py =2 U+ f (1, (1 + D)w, (1 +1)
0<=l<=L-]

In these equations a(!} is the activation value of the ith
neuron on the /th layer, The output of a neuron is denoted
by u, and the weight connecting the jth neuron of the /th
hidden layer to the mth neuron of the (/+1)th hidden layer
is denoted at w,;. The initial values are given at p{L) = |
if i=j, O otherwise.

This method of calculating the sensitivities depends on the
operating point of the system. However, it provides a more
accurate value for the gradient at a given point than the
secant estimation of perturbation analysis.

D. Environmental Exploration

One of the problems inherent to using computationally-
expensive physically based models is that it is difficult to
complete sufficient model runs to visualize data across its
possible spectrum. For example, a user may wish to look
at the effects of changing transmit pulse center frequency
across the entire range of possible center frequencies. The
user may also want to look at these effects at many
different operating points. This type of analysis would
require many model runs, and would be expensive to
perform with a slow acting model. It would also be
difficult to visualize the resulting data

We can use sensitivity analysis to address this problem.
Perturbation analysis can provide the user with the relative
sensitivity of the output to a given input at many operating
points.  Additionally, this analysis can be performed
extremely quickly. It is possible to average the results on
perturbation analysis over multiple operating points,
thereby obtaining a more general measure of sensitivity.
Access to the results of sensitivity analysis may allow the
users to better understand environmental behavior,
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E. Technology Development

Ideas for improving technology arise from a realization that
the current technology is insufficient. In the sonar control
problem, many issues stem from measurements of
environmental parameters. It is possible to use sensitivity
information to determine which of the environmental
parameters need to be measured to higher precision, or with
greater accuracy. Having this information can help direct
research efforts to those areas where improvement will be
of the greatest utility.

V. FUTURE WORK

This paper proposes many potential applications for
sensitivity analysis. It also details methods in which the
requisite sensitivities can be calculated. However, more
work is required to fully develop the applications.

The methods for calculating sensitivities have been
developed, but no complete comparison has been made
between them. Such a comparison would aliow for a better
-understanding of the relative strengths and weaknesses of
different sensitivity calculations. This, in tum, would
allow for better application of the technology. It is possible
that such work would also reveal ways to improve the
sensitivity calculations proposed above.

It will be important to determine the best way to inteq)ret
the outputs from each type of analysis. One case in which
this s difficult is the situation where two input values have
different units, and possibly vastly different scales. It is
difficult to know how a change in one set of units compares
to a change i another set of units. This issue is addressed
somewhat by looking at the sensitivities as percentages of
the entire input and output range. However, there could be
improvement with a novel presentation of the data,

- Finally, this paper suggests that sensitivity information
could be used by the optimization algorithm to improve
controlier behavior. Specifically, using a steepest descent
algorithm may provide a faster convergence than the
current brute force or stochastic searches. The sensitivity
information can be used to implement the improved
algorithm, but a rigorous study of this idea is still
necessary.
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