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ABSTRACT

We consider the problem of signal restoration when P
of every N samples in a discete time system are uni-
formly decimated. The degraded signal is an aliased
form of the original signal. The aliasing can, in cer-
tain cases, be unraveled by application of multiplicative
discrete time trigonometric polynomials followed by fil-
tering. The filter output is the restored discrete time
signal. Conditions required for this restoration are pre-
sented. The condition - and thus the noise sensitivity
- of the restoration process is also analyized.

1. INTRODUCTION

Discrete periodic nonuniform decimation occurs then
a discrete signal, f[n], is periodically set to zero over
a specified interval. Let the period of the decimation
be P and let N < P. Within a period, the first N
values are known and the remaining P — N are set
to zero. This periodic decimation is repeated for all
values of n. The periodically nonuniformly decimated
signal is denoted by g[n]. Given that the original signal,
fln], is bandlimited, the problem is, given g[n] and
the bandwidth B, to find, if possible, f[n]. This is
illustrated in Figure 1 for P = 5and N = 3. N =
P — 1 corresponds to the well studied uniform periodic
decimation [1]. The more general case where the first
N of P values are known in each period is considered.
The discrete periodic nonuniform decimation problem,
though, can be made more general than this. In a
period of P = 5, for example, the identity of the first,
third and fifth values may be known and the others not.
Interpolation in the case of these more general problems
follows straightforwardly from the analysis to follow.
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Fig. 1. Illustration of discrete periodic nonuniform dec-
imation. Here, the period is P = 5. Each of the first
N = 3 values are kept and the remaining P — N = 2
are discarded

2. PROBLEM DESCRIPTION

To generate the decimated signal, g[n}, define the dis-
crete rectangular pulse train

r¥[n] = i I[pP < n < pP + N] (1)

p=—oc0

where ll[n- < n <ny)=1forn. <n < ny and is
otherwise zero. Then

gln] = fln}rE ). 2)

Our task is, when possible, to find f[n] given its band-
width and g[n].

Taking the discrete time Fourier transform (DTFT)!
of both sides of (2) gives the circular convolution

G(v) = F(v) * (RF (v)I(v)) ©)

where II(v) == II (-} < v < 1) and R¥(v) isthe DTFT

of r¥[n]. From (1), RY (v) = 302 _ SAZFE ™" em92mme,

1The DTFT if a sequence z[n] is X (v) = 3"

% oo xlnlei%mv.
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In the n sum, let m = n — pP. Then

oo N-1
Rg(v) — Z e—j21eru Z e—j27rmv (4)
p=—0o0 m=0

The p sum is recognized as the Fourier series of Y . §(Pv
k). Using a geometric series, we can show

N-—-1
E : e—j21rmv

m=0

= Ne 9™ V=Dvarray v (v).

(5)

where arrayy(v) = sin(wNwv)/sin(rv). Equation (4)
therefore becomes

RE(v) = N comb(Pv)e "N -Dvarray v (v)
_ v _r
= D o (” P)
p=—o0
where

ap = %e"j"(N—l)”/ParrayN (%) . (6)

2.1. Degree of Aliasing

The function to be restored, fn], is assumed to have
bandwidth B < 1 so that F(v) = F(v)rzp(v) where
Ta(t) = Yow _oo II(12). The convolution replicates
this periodic spectrum in a possibly aliased fashion.
An example is shown in Figure 2 for P = 3. Since
one spectrum from the right overlaps the zeroth order
spectrum, the degree of aliasing is M = 1. In general,
the lowest frequency component of the Mth spectrum
isat v = % — B. We wish to determine the largest
value of M that infringes on the interval of the zeroth
order spectrum, i.e. the largest value of M such that
— B < B. The degree of aliasing follows as

M =<2PB > (7)

where < {( > denotes the largest integer not exceeding

¢.

2.2. Interpolation

For Mth order aliasing, as is the case for continuous
sampling {2], a total of 2M overlapping spectra must
be eliminated from their overlap of the zeroth order
spectrum. We desire coefficients {8,] ~ M < ¢ < M}
such that superimposing 2M + 1 versions of G(u) with
various shifts illimiantes the aliasing specta and recon-
structs the zeroth order spectrum exactly. We therefore
seek the coefficients that solve

Z GG (v-%)| =F@) 5 bi<B.

(8)

2

Fig. 2. Illustration of M = 1st order aliasing corre-
sponding to B = % and P = 3. The spectrum, F(u),
is shown with solid lines and the aliasing spectra with
broken lines. From (7), M = (3) =1.

The 4 coefficients are solutions to the following system
of 2M + 1 linear equations.

al 1 ; p=0
Z :Bqap—q = { 0 ; 1 S lpl S M (9)
g=-M
In matrix-vector notation, (9)is
AN, P|B =8y (10)

where A is a (2M +1) x (2M + 1) matrix with elements

(A[N, P])m

An—m

Re=im(N=Ur/Parrayy (£),

(11)

ﬁ is a vector of the (,’s, and 5 M is a 2M + 1 vector of
zeros except with a single “1” in the middle. The vector
,3 is therefore equal to the middle column of A~!.

Assuming these equations do not contain colhnear
terms, the values of {8,| — M < ¢ < M} can be solved
numerically. Since

f[’ﬂ] = f_%l F(’U)e-ﬂ’w"dv,
’ (12)
= f—BB F('U)ej%m'_"'dv’
we have, from (8),
fln] = f-I-BB F(v)ef?™"dy
= f7 [ a=—m BeG ( - _}q)_) I (_VE)] eJ2mvn gy,

49
P

1l

) (35)) erends.
(13)

Ef,‘i_M Bq f_%% [G (” -
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Fig. 3. Signal flow diagram for restoring a periodic
nonuniform decimated discrete signal. The bandwidth
of the low pass filter is B.

Since

i

il = [} X@H@)] ey

= z[n] * h[n]
where x denotes discrete convolution, z{n] < X(v),

and h[n] > H(v); and since

2B sinc(2Bn) «+ 11 (2—%) ,

and

g™/ G (v~ L), (14)

(13) becomes
fln] = [eM (%) g[n]] +2Bsinc(2Bn)  (15)
where we define the trigonometric polynomial
M .
Opm(v) = Y B’
q=—M

Since, however, g[n] = g[n]rX [n], knowledge of © s (%)
is required only when 7§ [n] = 1. Therefore, define the
periodic function

v () = O (5) ¥l
and (15) becomes

fln] = [g[n]\I!M (%)] * 2B sinc(2Bn). (16)

This procedure is illustrated in Figure(3).

2.3. The A[N, P] Matrix

The ability to solve the set of equations in (10) is de-
pendent on the condition? of the matrix A[N, P]. We
list two cases where the matrix is singular. '

2The ratio of the largest to smallest eigen value magnitudes.
The condition number is an indicator of the required computa-
tional accuracy. The condition number for singular matrices is
0.

condition

Fig. 4. A plot of matrix condition number for first
order (M = 1) aliasing for various N and P. (Values
for N < P are shown set to zero).

1. The A[1, P] matrix is singular when N = 1. Thus,
interpolation using (16) is not possible. To show
this, we note that, since array;(z) = 1, each ele-

ment of the A[1, P] matrix in (11) is anm = ¥.

2. The matrix A[N, P)] is singular when B > 1. It is
straightforward to show that the coefficient a, in
(6) is periodic with period P. The 2M shifts in
(9) must not allow the an entire shift of a period
into the matrix. Otherwise, two rows of A[N, P]
will be identical. The matrix is therefore singular
when P < 2M. Substituting the aliasing relation
in (7) gives P < 4BP from which the singularity
condition B > % results.

The condition number for A[N, P] can be computed
directly. For example, when M = 1.

P=|2 3 4 5 6

N=1|{cw o 00 00 foe}
2({o00 00 o© o 00
31— o0 4 131 34.0
4| - — oo 2.50 6.00

A plot of the condition number for M =1 for P up to
40 is shown in Figure 4.

3. THE PERIODIC FUNCTIONS, ¥ (V)

The periodic functions, ¥as(v), needed to interpolate
the periodic nonuniformly decimated signal in (16) can
be evaluated straightforwardly when the A[N, P] ma-
trix is well conditioned. An example of the resulting
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Fig. 5. Plots of Uy, (%) for M =1,P=5and N =
3,4,5.

which this value is positive. Solving 5* + B > 0 gives
My =< BP > .
Note, for M even, 2M; = M. Instead of the equation

in (8), we desire to solve

M
> BG(v-5)=F@); 0<v<B.
q=-M2

17

To find the 3 coefficients, instead of (9), we solve the
following set of M + Ms + 1 linear equations.

M
Z _J1 ;5 p=0
2 ﬂ"a”_"_{O ; ~My<p<-land1<p<M
g=—M3
(18)
5. NOTES

e For other parameters fixed, our conjecture is the
restoration condition of alias unraveling increases

with the degree of aliasing, M, and number of
lost samples in a period, N, and decreases with
period, P.

e There are other restoration procedures applicable
to discrete periodic nonuniform decimation in-
cluding the celebrated Papoulis-Gerchberg algo-

rithm [2-3]. A comparison of the noise sensitivi-
ties of the alias unraveling procedure has yet to be
performed. The alias unraveling approach, how-
ever, can be performed in real time using causal

0 10 20 30 40 50 60 70 80

Fig. 6. Plots of p (&) for M = 20, P = 100 and
95 < N < 100.

periodic functions are shown in Figures 5 and 6 for
(M, P) = (1,5) and (M, P) = (20, 100) respectively.

4. QUADRATURE VERSION

If f[n] is real, its DTFT is conjugately symmetric.
That is, F(v) = F*(—v). Therefore, if f[n] is ban-
dlimited, knowledge of F(v) is only required on the in-
terval 0 < v < B. With reference to Figure 2, only the
aliasing for positive v must be removed. There are M
aliasing spectra to the right of the zeroth order spectra.
In addition, there are spectra to the left of the positive
frequency region of the zeroth order spectrum. The
maximum frequency component of the —mth spectrum
is =5* + B. Let —M> be the minimum value of —m for

low pass filters in place of the ideal filters used
in the theoretical development. The Papoulis-
Gerchberg algorithm requires knowledge of the
entire decimated signal before the iterative restora-
tion algorithm can be applied.
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