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Abstract: The importance of Short-Term Load Forecasting 
(STLF) has increased, lately. With deregulation and competition, 
energy price forecasting has become a big business. Load bus 
forecasting is essential for feeding the analytical methods used for 
determining energy prices. The variability and nonstationarity of 
loads are getting worse due to the dynamics of energy tariffs. 
Besides, the number of nodal loads to be predicted does not allow 
frequent interventions from load forecasting specialists. More 
autonomous load predictors are needed in the new competitive 
scenario. Despite the success of neural network based STLF, 
techniques for preprocessing the load data have been overlooked. 
In this paper, different techniques for preprocessing a load series 
have been investigated. The main goal is to induce stationarity 
and to emphasize the relevant features of the series in order to 
produce more robust load forecasters. One year of load data from 
a Brazilian electric utility has been used to validate the proposed 
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I. INTRODUCTION 

Artificial Neural Networks (NNs) have been successfully 
applied to Short-Term Load Forecasting (STLF) [1-4]. Many 
electric utilities that had previously employed STLF tools 
based on classical statistical techniques, now are .using NN 
based STLF programs [5, 61. It is one of  those rare cases in 
history where science has become technology after a short 
period of  development. Nevertheless, this technology is far 
from reaching its limitations. Data preprocessing for load 
series analysis has been extensively studied by  classical 
statistics [7]. However, due to the robustness o f  NN models, 
the benefits of  data preprocessing has been underestimated in 
NN based load forecasting. 

Techniques such as  signal centralization, standardization, 
transfonnation, detrending, differencing, seasonal differencing, 
and filtering have been almost completely ignored. References 
[8, 91 are among the few exceptions. These techniques are 
useful for emphasizing important features o f  the load series, 
improving stationarity, and removing outliers. Without them, 
linear models for prediction would be  completely useless [lo]. 
On the other hand, as  NN models can include nonlinear 
effects, can deal, to a certain extent, with trends, seasonal 
components and outliers, data preprocessing for NNs has not 
been common practice. Nevertheless, it seems reasonable to 
remove from the load series the almost deterministic 
information, saving the NN learning capability for modeling 
the not so  obvious regularities. 

Paper ISAP2001-No 56 accepted for presentation a t  the 
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In other words, if the designer knows beforehand any 
information, then it should be incorporated in the model rather 
than requiring the network to learn it from examples. 

 he-two m a i n  contributions of  this paper are related to 
improving stationarity and emphasizing important features of 
load series for NN training. It is well known that differencing 
improves stationarity. Even a NN model is expected to have a 
better performance if differencing is applied. The high 
.frequency components o f  the load series, mostly related to 
random noise, can obscure the important regularities of the 
data, making the NN training harder. Filtering can smooth the 
load curves, removing outliers and bringing up important 
information. However, not all high frequency fluctuations are 
meaningless. The idea is to smooth the data, for the clarity it 
brings to lower frequency components, feeding the NN also 
with the original sehes and/or the differenced series, to find 
high frequency patterns, too. 

This paper is divided as follows. In Section 11, data 
normalization, centralization, differencing and seasonal 
differencing are analyzed. Filtering is the subject of  Section 111. 
In Section IV, the proposed load forecasting models are 
described. These models are compared through forecasting 
simulations in Section V. Finally, Section VI presents the main 
conclusioris o f  this paper and indicates some directions for 
future work. 

11. NORMALIZATION & DIFFERENCING 

Depending on the type of  activation function used in the 
NN output neuron(s), it is necessary to normalize the output 
variable(s) in order to consider the activation function output 
range. Even when the activation function output is unbounded 
(e.g., a linear activation hnction), it is still useful to normalize 
the output and the input variables in compatible ranges. This 
procedure usually helps to improve training efficiency. The 
basic motivation for normalizing input and output variables is 
to make them equally important to the training process. 
Normalization also helps to improve the NN mapping 
interpretability. 

The most common normalization procedure is the one in 
which the variables are linear transformed according to pre- 
specified minimum and maximum values. However, a 
complementary normalization procedure based on the 
standardization o f  variables, i.e. transforming the variables such 
that they have zero mean and unit standard deviation, can be 
very useful. This complementary transfonnation makes 
different variables directly comparable. Notice that it is still 
necessary to apply the first mentioned ordinary transformation 
aftenvards, in order to guarantee the plausibility of the transfer 
function output range. 
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The process of  differencing computes the differences of 
adjacent values of a load series, i.e. the new series represents 
the variations of the original one. Differencing helps to 
improve stationarity. For instance, a linear trend can be easily 
removed applying differencing. For more complex data, it can 
be necessary to apply differencing more than once. Another 
reason for differencing is that, depending on the variable, the 
variations can be more important than the original values (e.g., 
temperature). Differencing can be interpreted as a kind of 
high-pass filter. 

Electric load series have very strong seasonal components. 
They are always characterized by daily, weekly and annual 
seasonal patterns. Except when dealing with certain special 
holidays (Christmas, New Years', etc.), the annual seasonality 
is irrelevant for STLF purposes. This is because the training 
window does not usually exceed a few weeks, in order to 
preserve stationarity. Seasonal differencing, i.e. computing the 
differences for the corresponding seasonal period, is also 
important for inducing stationarity. With seasonal differencing, 
the importance of the seasonal lag is implicitly embedded into 
the model, without the need of explicitly including the 
corresponding lagged term as an input variable. 

111. FILTERING 

Electric load series (global, regional or per bus) are formed 
by the aggregation of individual consumers of different natures 
(residential, commercial and industrial). A good piece of the 
information provided by a load series is usehl  for forecasting 
purposes. The rest is related to a random component (noise). 
Therefore, there are three main reasons for filtering an electric 
load time series. First, the noise can be reduced. Second, 
important features of the load series can be emphasized. 
Finally, a partition in different components of the load series 
can be produced, decreasing the learning effort. 

Digital filters have been used in this work. It is necessary 
to avoid losing important information contained in the original 
time series when applying filters to forecasting. Linear filters 
have been suggested for avoiding this problem [I  I]. The idea 
can be illustrated by the application of one single filter. In 
order to not lose any relevant information, the filtered series is 
subtracted from the original one. Therefore, by adding the 
output of the filter with the result of the subtraction, the 
original series is perfectly reconstructed. 

Usually, more input variables feed the NN load forecasters 
when filters are applied to preprocessing the original data 
(e.g., lagged variables related to the filtered series plus lagged 
variables related to the complementary series). However, as 
these variables are nearly independent, the forecasting models 
are not significantly affected by the curse of dimensionality. 
Filters can be characterized by their cutoff frequencies and 
widths. The width parameter needs a carehl specification. The 
smaller it is (producing a narrow transition zone from the 
cutoff frequency to total cutoff), more load values are used for 
filtering each value. It is not appropriate to use too many load 
values before and after a certain time slot in order to filter its 
value. A few adjacent neighbors are supposed to contain the 

most usehl information for this purpose, without excessively 
enlarging the filter width. 

Digital filters in the frequency domain are employed in this 
work. An important point to be taken into account is the 
problem known as circular convolution. The discrete Fourier- 
transformer wraps the time series around in a circle. This is 
equivalent to appending the beginning of the series at its end 
and vice-versa. Therefore, for forecasting purposes, where the 
last known load values are usually among the most relevant 
data, circular convolution is a major concern. As it is not 
possible to avoid circular convolution, padding is adopted. 
Padding means attaching convenient data at the end andfor at 
the beginning of the load series. The objective is to avoid the 
influence of circular convolution on both sides of the load 
series used for training and on the data required for prediction. 

No padding and two different padding schemes have been 
compared in this work. The first padding scheme includes zeros 
at the beginning and at the end of the load series. The second 
one appends the previous load values at the beginning of the 
series and forecasted values at the end of it. Another important 
question is related to the length of the attached information. A 
conservative estimation for the attachment length can be 
determined by the following procedure. Initially, the minimum 
attachment to both sides of the series is determined, considering 
the filter width. Then, the next power of two greater than the 
sum of the original load series length with the minimum 
attachment is used to define the final attachment length. The 
extra padding to reach a power of two does not affect the 
filtering of the first and last original load series values. It is 
included to improve the discrete Fourier transformer efficiency, 
i.e. to allow the application of the FFT. 

The following procedure for filtering a load series has been 
adopted [12]. Initially, pad as previously described. Reference 
[I  I ]  suggests that the minimum padding on each side of the 
series can be estimated dividing 0.8 by the filter width. Then, 
compute the discrete Fourier transformer (I): 

Following that, perform a low-pass filtering in the 
frequency domain applying an energy decay factor (2) to IV,, 

after the filter cutoff frequency j,. The parameter I determines 

the filter width. 

H ( j )  = e (2) 

Next, apply the inverse transform to return to the time 
domain (3). Finally, disregard the filtered values corresponding 
to padding. 

1 n-I 

( 2 )  f - ( 2  
p: = - (1"; COS - - Il;. S,,, - 

1' ,=a 
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IV. LOAD FORECASTING MODELS (zero mean and unit variance). Fig. 2 shows the diagram for 
M2. 

This section describes load forecasters that employ 
different combinations of preprocessing. Six possibilities have 
been compared. The first four do not apply filtering in the L o a d  D a t a  

frequency domain to the load series. The idea is to incorporate 
different alternatives of preprocessing, one by one, and to 
verify the corresponding perfonnance gain. The basic set of N o r m a l i z a t i o n  V i a  S t a n d a r d i z a t i o n  

input variables correspond to the lagged values of the hourly 
load series by Ih, 2h, 24h and 168h, and hvo additional inputs, 
HS(k)=sin(2nk/24) and HC(k)=cos(2~W24), codifying the M L P  L o a d  F o r e c a s t e r  

hour of the day. The output corresponds to the one step ahead 
I load forecast. Fig. 2. Load forecaster with standardized variables. 

It has been recently shown that the best input variables for 
linear load predictors are not necessarily among good input C. Model 3 (M3) 
variables for nonlinear ones 1131. The present work keeps 
using the most popular input variables for load forecasting The third load predictor adds differenced variables to the 
purposes. This is because the main goal of  this paper is to set of inputs of M2. Therefore, two time series are employed: 

I show that the preprocessing of a load series is very beneficial the standardized and the differenced one. Differencing is 

I for nonlinear predictors, too. applied to the standardized series. For M3, only the first-order 
The selected architectures for each input set (Sections A-F) time differences @) are considered. Fig. 3 illustrates the new 

vary with respect to the number of hidden neurons. One to set ofinputs. 
three hidden neurons have been used depending on the period 
of the year. Wintertime, because of  weather stability, is usually 
the easiest season for load prediction, therefore requiring less 
hidden neurons. Summer and the transition seasons, for the 
opposite reason, are more difticult, consequently demanding 
more hidden neurons. One single hidden layer has been used. 
Hyperbolic activation functions and a linear activation 
function have been employed in the hidden and output layers, 
respectively. 

A. Model I (MI) 

The first load forecaster is the simplest one. It uses the 
basic set of input variables with ordinary normalization (e.g., Fig. 3. Input set for model 3. 
minimum and maximum values in the [0;1] range). The output 
variable is also nonnalized with the same procedure. Fig. 1 D. ~ , , d ~ l 4  ( ~ 4 )  
shows this Multi-Layer Perceptron (MLP) load predictor. 

In M4, seasonal differencing is incorporated (Fig.4). Taking 
the first-order differenced series (D), a hventy four hour 
differencing period is applied, producing a new series SD. 
Since the 24 hour seasonal pattern is removed fiom series D, 

+P(k) there is no need for the input variable SD(k-24). 

Fig. 1. Load forecaster with basic inputs. 

B. Model 2 (M2) 

The second model uses the same structure and the same 
type of inputs as MI. However, the normalization procedure 
for the input and output variables is not the same. For M2, the 
normalization is also based on standardization of the variables 

Fig. 4. Adding seasonally differenced inputs. 
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E. Model 5 (M5) 

Model 5 adds filtered variables to the M2 inputs, removing 
P(k-I), P(k-2), P(k-24) and P(k-168) to avoid redundancy 
(Fig.5). Only a low-pass filter is applied. The cut-off frequency 
is 1/24 cycles per sample and the filter width is 0.025. For this 
filter width, a minimum padding of 32 points is required for 
each side of the load series. The forecasts for padding are 
provided by M3. The new filtered series (LOW) describes the 
daily load behavior in a very smooth way. The complementary 
series (COM), i.e. the standardized load series minus the 
filtered series, is also used in order to provide higher 
frequencies information. 

Fig. 5. Incorporating filtered inputs to the load forecaster. 

F. Model 6 (M6) 

The last predictor is similar to MS, except that new input 
variables are added to it. These new variables are the first- 
order differences D(k-I), D(k-2), D(k-24) and D(k-168) of 
the standardized load series. It is worthwhile to mention that 
the combination of the first-order differencing with the 
daily/~veekly seasonal differencing has also been tried. 
However, it has degraded the predictor's performance. It 
seems that the NNs prefer to receive the seasonal information 
dircctly. The following diagram describes M6. 

Standardization + 
+ 

~ I L F  Load Forecaster 

Fig. 6.  Adding differenced inputs to model 5. 

Fig. 7 illustrates the effect of applying the low-pass filter 
specified for models 5 and 6. Notice that as a side effect of 
smoothing, the peaks and valleys of the original load curve are 
attenuated. However, important features of the original series - 
are emphasized, such as load levels, slopes and trend reversals. 

1 25 49 73 97 121 145 

Time (h) 

o r i g i n a l  load curve ----,filtered curve 

Fig. 7. Application of the low-pass filter. 

V. TESTS 

A comparison of the six previously mentioned models has 
been performed. Six-week windows have been taken for 
training (and testing), with data grouping according to the day 
of the week. For each day of the week, a MLP has been trained, 
applying the backpropagation algorithm with cross-validation. 
Different partitions for the training and testing sets are 
randomly created every 50 epochs. During the NNs training, 
there is no particular treatment for holidays. Special days have 
been excluded fiom the training set. A load series From an 
electric utility in Rio de Janeiro, Brazil, has been used 
(maximum load around 3,900 MW). 

After the one-step ahead training, the one to twenty four 
steps ahead recursive load forecasts are computed. The load 
forecasters are retrained at the end of the day. The six-week 
training window is moved one day fonvard, and the forecasts 
for the next 24 hours are performed (predictions always start at 
midnight). This validation procedure is repeated for one year. 
The Mean Absolute Percentage Error (MAPE), Mean Square 
Error (MSE), Mean Error (ME) and Maximum percentage error 
(MAX) have been used to evaluate the load forecasting models. 
The follo~ving tables present the forecasters performances for 
different days of the week (Table I), for 1-24 steps ahead 
predictions (Table II), and a global average evaluation (Table 
111). 

Sunda E% 1 Monday 1 3.0 1 3.0 1 2.3 
Tuesda I* 

ACCORDING TO THE DAY OF WEEK 

Thursday 2.8 2.7 2.4 
Friday 2.1 2.5 2.0 1 2.4 1 1.7 1 1.9 

Saturday 3.3 3.1 2.5 1 3.1 ( 2.5 ( 2.5 
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TABLE I1 - FORECASTING PERFORMANCES (MAPEs) FOR 

-No padding 0 - - - -  Zero padding -Proposed padding 

Fig. 8. Distortions generated by different padding schemes. 

TABLE 111 - OVERALL EVALUATION OF THE LOAD 

Model 3 has been the most accurate among the predictors 
which have not applied filtering in the frequency domain for 
preprocessing the input data. That justifies the option o f  taking 
its forecasts for padding the data to be used by M 5  and M6. 
Models 5 and 6 are not as precise as model 3 for one step 
ahead forecasts (see Table 11). This is the bad side effect of  
filtering, i.e. the model takes longer to react to sudden changes 
in the load behavior. However, for multiple steps ahead, 
filtering decreases the forecasting errors. 

It is clear that a larger forecasting lead-time does not 
necessarily imply in a larger forecasting error. That depends 
on the data variability for the different periods of  the day [14]. 
Notice that the MSE, in Table 111, points out a greater number 
of high errors for M3. The incorporation o f  differencing has 
lnadc M6 more precise and less biased than M5 (see ME in 
Table 111). The Gain column in Table I11 compares models 3 
and 6. 

An important decision regarding the estimation of  models 5 
and 6 is related to the type of padding to be used. Three 
possibilities were mentioned in Section 111: no padding, 
padding with zeros, and padding with measured values at the 
beginning of the series and with forecasted values at the end of 
it. Fig. 8 shows the deviations of these three schemes from the 
result of  the ideal padding, i.e. measurements attached to the 
beginning and to the end of  the series, too. Notice that for 
forecasting purposes the measured values at the end of the 
series are, in principle, unknown. The filtered series with no 
padding presents oscillations allover. The zero padding scheme 
introduces very heavy oscillations on both sides o f  the filtered 
series. The proposed padding scheme (the third one) produces a 
filtered series quite similar to the one generated by the ideal 
padding, i.e. almost zero deviation. 

Fig. 9 shows a typical case for the traininghesting (cross- 
validation) of  predictors 3 and 6.  Besides being more stable, 
the training process for M6 always has lower testing errors 
along the epochs than M3. 

Epochs (x50) 

0  2C 4 0  6 0  8 0  1 m  1 2 0  1 4 0  1 6 0  1 8 0  

Epochs ( ~ 5 0 )  

Fig. 9. Improving the learning capability through filtering 
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VI. CONCLUSIONS 

With power systems growth and the increase in their 
complexity, many factors have become influential to the 
electric power generation and consumption. Therefore, the 
forecasting process has become even more complex, and more 
accurate forecasts are needed. Short-term load forecasting is 
essential for feeding the analytical methods used for 
determining the short-term energy prices. The variability and 
nonstationarity of  electric loads are increasing because o f  the 
dynamics of  energy tariffs. More autonomous and robust load 
predictors are needed in the new competitive environment. 

In this work, the implications of  preprocessing a load series 
for prediction have been investigated. Six procedures for 
preprocessing a load series have been compared. The 
combination of standardization, first-order differencing and 
linear filtering has been the most effective. It has been shown 
that the padding scheme for the low-pass filter is very 
important. Attaching load measurements to the beginning of 
the series and forecasted values on the other side has been the 
best way to avoid distortion due to circular convolution. 

The best load predictor without filtering in the frequency 
domain, i.e. the one responsible for padding, applies 
standardization and first-order differencing to the load data. It 
is true that the computational effort increases with the 
application of  preprocessing based on filtering in the 
frequency domain. Although, using the fast Fourier 
transformer, the filtering itself does not introduce a heavy 
computational burden, the number of  NNs doubles (since M3 
MLPs are also required). However, considering the 
performance gains, filtering is worthwhile. 

Future work will focus on the incorporation of input 
variables related to weather. Due to climatic diversity over the 
geographical zone o f  interest, many meteorological stations 
are necessary to establish a significant correlation with the 
load. Installation o f  such devices is still being planned by the 
local electric utility. Although it would be desirable to count 
on such information, the univariate adaptive procedure 
proposed in this paper implicitly tracks the weather induced 
load changes over the short-term. Nevertheless, the same idea, 
i.e. preprocessing, applies to multivariable time series as well. 
The application of  other types of  filters, such as the ones based 
on wavelets, will also be investigated. 
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