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Abstract—One of the most important considerations in ap-
plying neural networks to power system security assessment is
the proper selection of training features. Modern interconnected
power systems often consist of thousands of pieces of equipment
each of which may have an affect on the security of the system.
Neural networks have shown great promise for their ability to
quickly and accurately predict the system security when trained
with data collected from a small subset of system variables. This
paper investigates the use of Fisher’s linear discriminant function,
coupled with feature selection techniques as a means for selecting
neural network training features for power system security
assessment. A case study is performed on the IEEE 50-generator
system to illustrate the effectiveness of the proposed techniques.

Index Terms—Dynamic security, intelligent systems, neural net-
work, power system.

I. INTRODUCTION

T HE trend toward deregulation has forced modern utilities
to operate their systems closer to security boundaries. This

has fueled the need for faster and more accurate methods of se-
curity assessment. Power system security assessment deals with
the system’s ability to continue to provide service in the event of
an unforeseen contingency. Such contingencies may include the
unexpected loss of an important transmission circuit or a sudden
change in a large load. Either of which could lead to a disrup-
tion of service to part or all of the system. The goal of security
assessment is to determine when a disruption of service is likely
to occur and to take steps to reduce the risk.

Neural networks have shown great promise as a means of
predicting the security of large electric power systems [1]–[3].
Neural networks offer several advantages over traditional tech-
niques including the ability to learn from examples.

The first step in applying neural networks to power system
security assessment is the creation of an appropriate training
data set. A common approach is to simulate the system in
response to various disturbances and then collect a set of
pre-disturbance system features along with the corresponding
system security index. Possible security indices include the
Critical Clearing Time (CCT) [1] and the system Energy Margin
(EM) [3]. One of the most important aspects of achieving good
neural network performance has proven to be the proper
selection of training features. Thecurse of dimensionality
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states that, as a rule of thumb, the required cardinality of the
training set for accurate training increases exponentially with
the input dimension [5]. Thus, choosing a small subset of the
thousands of possible features,i.e. featureselection, requires
a small fraction of the training samples required if all features
are used. Feature selection is the process of identifying those
features that contribute most to the discrimination ability of the
neural network. Only these features are then used to train the
neural network and the rest are discarded. Proposed methods
for selecting an appropriate subset of features are numerous
[1]–[4].

An alternate to feature selection is featureextraction. Here,
the dimensionality of a feature set is reduced by combining fea-
tures while retaining characteristics that allow for accurate clas-
sification. Feature extraction is the process of mapping all avail-
able features into a composite feature set of lower dimension.
Feature extraction techniques applied to power system security
assessment have previously been presented by Weerasooriya
and El- Sharkawi [6].

Many feature extraction techniques such as the principle com-
ponents algorithm are based on the assumption that the greater
the spread of the data in a particular axis, the greater the ef-
fect that will have on the discrimination ability of the neural
network. This need not be true. Feature selection methods, on
the other hand, generally are based on ranking different combi-
nations of features in accordance to their classification perfor-
mance and choosing the combination that achieves the highest
ranking. Unlike feature extraction, no preprocessing is required
once the features are chosen.

The basic problem encountered in all feature selection algo-
rithms is how to deal with the computational complexity in-
volved in searching among the large number of possible solu-
tions. Given a set of features, , the task is to
determine the subset of features that best satisfies some
selection criteria. The search for the optimal subset of features is
a combinatorial problem that requires selection amongpos-
sible solutions, where,

becomes excessive even for relatively small values ofand
.
The simplest method to deal with this complexity, involves

determining agoodnessscore for each individual feature, and
then ranking the features based on their scores. A commonly
used example of agoodnessscore uses theFisher discriminant.
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Fig. 1. (a) The Fisher linear discriminant projects data onto a lower dimension
that maximally separates the classes. (b) A nonoptimal discriminant function.

The simple ranking method gives poor performance in cases
when many features are highly correlated. In such cases, sev-
eral features may have high individual discrimination ability, but
due to their correlation, they offer no improvement when used
together. For this reason, more advanced methods are presented
to find features that work well together.

Section III presents the IEEE 50-genrator transient stability
test system. Section IV outlines several feature selection tech-
niques that have been proposed. In Section V, a case study of the
proposed techniques is presented to illustrate how neural net-
work training features can be selected that are independent of
changes of system topology. Finally, conclusions are presented
in Section VI.

II. FISHER’S LINEAR DISCRIMINANT

The Fisher linear discriminant function was proposed in 1936
[6],[7]. It seeks to find the optimal linear discriminant func-
tion for separating two classes of data. Given a set of -
dimensional training samples with samples in
class and samples in class , the task is to find the linear
mapping, , that maximizes,

where is the mean of class and is the variance of . In
words, this corresponds to finding the line that when the data are
projected onto, provides the maximum separation (see Fig. 1).

The criterion function, , can be rewritten as an explicit func-
tion of as

(1)

where is referred to as thebetween-class scattermatrix and
is thewithin-class scattermatrix. Thewithin-class scatter,
, is defined as

where and are

and

Thebetween-class scatter, , is

Solving (1) for the Fisher weights, , that maximize can
then be written as

Fisher’s linear discriminant function is a projection from a
-dimensional space onto a line in such a manner that the

training data is best separated. Fig. 1(a) shows the optimal
(Fisher) projection for a 2-dimensional problem and Fig. 1(b)
shows a nonoptimal projection. It can be seen that the Fisher
vector, , defines the line — or, more generally, the hyperplane
– that results in the greatest separation between the’s and ’s
when data are linearly.

The Fisher discriminant can also be used as a means of as-
sessing the linear separability of two classes of data. For ex-
ample, the magnitude of the Fisher function,, can be used as
a measure of how well a linear classifier will perform on a given
problem. The higher the value of, the more separable the data
are, and thus the higher the expected performance of the clas-
sifier. Different combinations of features can also be compared
by comparing their respective Fisher values. This technique is
used in the proceeding sections as a method for comparing dif-
ferent combinations of features in an effort to find the optimal
combination.

III. FEATURE SELECTION TECHNIQUES

If the dimension of the problem is small, a reasonable tech-
nique is to simply search through all possible combinations of
features and calculate their corresponding Fisher values. The
optimal feature set is then the set with the highest Fisher value.
This is only practical on small problems as it requires the eval-
uation of Fisher values.

In problems where the dimension is too high for an exhaustive
search, a search technique called the backtrack search [4], also
known as the branch-and-bound algorithm, can be employed to
ease the computational burden. The backtrack search guarantees
the optimal solution if the criterion function satisfies the mono-
tonicity condition. The monotonicity condition requires that the
value of the criterion function be nondecreasing when additional
features are added. The Fisher linear discriminant function sat-
isfies this condition because increasing the input dimension,,
can never result in a decrease in the Fisher value.

The mechanics of the backtrack search are best illustrated, as
in Fig. 2, in the form of a search tree. The root of the tree con-
tains all of the features to be considered. Each node under the
root corresponds to the removal of a single feature. The tree has
depth , and the leaves of the tree contain all possible com-
binations of features out of the original . The algorithm is
initialized by calculating the Fisher value at any one of the leaves
and the value is stored as the current best solution. The tree is
traversed starting at the root and calculating the Fisher value,

, at each node along the way. Since the monotonicity condi-
tion applies, the value of is guaranteed to be nonincreasing as
the tree is traversed Therefore, if at any point along the traversal,
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Fig. 2. Search tree for the backtrack algorithm for choosing the 2 best features
out of 5.

the value of falls below current best value found at any of the
leaves, the rest of that branch need not be evaluated.

An example illustrating the backtrack search when applied
to the selection of the two best features out of five is shown in
Fig. 2. Initially, the branch at the far right side is evaluated and
the Fisher value of the subset is determined and saved
in the variable . Next, the algorithm backtracks and proceeds
down the next unexplored branch comparing the Fisher value,

, at each node to . If the value of exceeds , there is still
a chance that a better feature set will be discovered, so the al-
gorithm must continue to search along the rightmost unexplored
branch. When the bottom of the tree is reached, if the value of
is still greater than , then is updated accordingly. If on the
other hand, a node is found where the value ofis less than ,
the rest of that branch need not be traversed due to the mono-
tonicity condition. After the entire tree has been evaluated the
optimal feature set is the one corresponding to.

The backtrack method is particularly efficient when the fea-
tures are preordered and placed in the tree in order of the mag-
nitude of their individual Fisher values from left to right. This
tends to put the better solutions toward the right side of the tree,
which, in turn, tends to allow the algorithm to eliminate the max-
imum number of branches from the search.

The backtrack method should be used with caution because
its worst-case run time can be much worse than exhaustive
search. In worst case, the backtrack algorithm must evaluate
every node in the tree. The number of evaluations required in
the worst case is therefore,

where
total number of raw features;

number of features to be selected;

height of the nodes in this level of the tree.

In cases where the backtrack method proves computation-
ally infeasible, a sub-optimal solution needs to suffice. Sequen-
tial ranking methods are relatively simple methods utilizing a
heuristic that involves building a feature set by choosing the
next feature that works best with the previously chosen features.

There are several variations including the forward sequential,
backward sequential and theplus-l take away-ralgorithm.

The forward sequential method is a bottom-up algorithm that
starts by choosing the best individual feature. Then the feature
set is built from the ground up, by repeatedly adding the next
feature that works best with the previously chosen features. This
algorithm requires evaluations. The backward
sequential method is very similar to the forward sequential ex-
cept that it is a top-down algorithm. Instead of starting with an
empty set and building a set of features, the backward sequen-
tial method starts with the complete set of features and itera-
tively removes them one at a time until only the desired number
remain. This is done by calculating the Fisher value for all sub-
sets of features where is the current number of features
remaining. The feature that results in the smallest decrease in
Fisher value at each iteration is then removed. The backward
sequential method requires the same number of evaluations as
the forward method, but is more computationally demanding be-
cause the calculation of the Fisher discriminant is in a higher
dimensional space at each iteration.

It should be noted that while the Fisher linear discriminant
function has been shown to produce the optimal classification
boundary for a linear classifier, its performance on a nonlinear
neural network classifier is not known. The nonlinear neural
network is commonly accepted as a more general model than
a linear classifier. Theplus- take away- algorithm is essen-
tially a combination of the forward sequential and backward
sequential methods. In this algorithm,features are added via
the forward method followed by the removal offeatures by
the backward method. This is advantageous in that it provides
the algorithm the ability to remove features that are no longer
needed due to combinations of features subsequently added. The
algorithm works in either the top-down or bottom-up direction,
depending on if or . For the case where, , the
order of the forward-backward methods is be reversed,i.e., the
algorithm starts with all the features andfeatures are removed
followed by the addition of features.

IV. IEEE 50 GENERATORSYSTEM

To assess the applicability of the Fisher linear discriminant
function as a means of selecting neural network training
features, an empirical study was conducted on the IEEE 50-
generator transient stability test system [13]. The system con-
sists of 50 generators, 145 buses and 453 transmission lines and
transformers. A training database was collected by simulating
3-phase faults at nine different buses throughout the system.
Of the nine faults, 4 were on the 500 KV subsystem, 1 was
on the 220 KV system and 4 were on the 100 KV subsystem.
The locations were chosen to cover a wide cross-section of the
system. The critical clearing time for each fault was determined
by simulating the system response using the EPRI Electric
Transient Mid-Term Stability Program [12] (ETMSP) software
program. The system was simulated for 651 different system
operating conditions. The real and reactive power output of
each of the 50 generators as well as the total system real and
reactive load level were recorded along with the system critical
clearing time for each of the 651 simulations.
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TABLE I
STATISTICAL ANALYSIS OF FISHER’S LINEAR DISCRIMINANT APPLIED TOFEATURE SELECTION FORSECURITY ASSESSMENT.

Fig. 3. Histograms showing the distribution of the neural network training error for various combinations of 4 randomly chosen features.

V. JUSTIFICATION OF FISHERFEATURE SELECTION

The Fisher forward sequential method was used to select the
best 4 features for each of the nine faults considered in the study.
Then a neural network was trained for each of the faults using
the 4 best features found from the forward sequential method.
The neural network training results are summarized in Table I. A
commercial neural network simulation package called QwikNet
[11] was used to train and test the neural networks.

Therefore, its performance should beat leastas good as that
of the linear classifier. The question then arises as to how well
the neural network performs given the optimal set of features

for a linear classifier? This question is not easy to answer the-
oretically since, short of exhaustive search, there is no known
technique for determining the optimal feature set for a multi-
layer perceptron neural network. What can be done, however,
is to perform a series of computer simulations to assess the dis-
crimination ability of a given feature set on a given neural net-
work model. These simulations can then be used to compare dif-
ferent feature sets and a statistical framework can be developed
to quantify the performance of the Fisher linear discriminant.

Many statistical techniques exist for defining confidence in-
tervals based on known probability distribution functions [9].
In this case, the probability distribution function of the neural
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network classification error for various combinations of input
features can be estimated by randomly generating different fea-
ture combinations and determining their corresponding neural
network classification error. The neural network model used in
this study consisted of 3 layers with 4 inputs, 10 hidden neurons
and a single output. For each of the nine faults, 1000 random
combinations of 4 features were generated. A neural network
was then trained using each of the 1000 feature combinations.
Fig. 3 is a histogram of the neural network training error based
on randomly selecting 4 power system input features out of a
total of 102. The training error for each network was based on
the average training error over 5 training sessions with different
random initial weights. The results are summarized numerically
in Table I.

Several techniques exist for calculating tail probabilities of
the form , where is an unknown random variable
and is a given distance from the mean. If the variance,, and
the mean, , of the underlying process are known, the Cheby-
shev inequality [9] can be used to establish bounds on the prob-
ability of a sample occurring greater than a given distance,,
from the mean. The Chebyshev inequality states that,

The Chebyshev inequality makes no assumptions regarding
the distribution of the underlying process, other than its mean
and variance. Because of this, the established bounds are often
very loose. Nevertheless, the Chebyshev inequality is still useful
for establishing a theoretical upper bound on the probability that
a feature combination exists that is superior to the combination
determined by the Fisher feature selection method. The right
column of Table I shows the probability of the existence of a
combination of features superior to that found by the Fisher for-
ward sequential technique.

Confidence intervals [10] are a well-known metric for as-
sessing the reliability of experimental results. The equations for
the upper and lower bounds on experimental results are,

(2)

where
point estimate of the trial;

number of samples;

of the normal distribution.

(2) can be used to place a bound on the observed results with
percent certainty. Experimental results show that the features

selected by the Fisher technique were found to be better than all
but 46 out of 9550, or 99.54% of all randomly generated feature
combinations. The 95% confidence interval is (99.38, 99.65).
Table II shows the experimental 95% confidence intervals for
each of the faults under study.

TABLE II
COMPARISON OF THEPROBABILITY OF THE EXISTENCE OF A FEATURE

SET BETTER THAN THE SET SELECTED BY THE FISHER FEATURE

SELECTION ALGORITHM

TABLE III
TOPOLOGYCHANGES

Fig. 4. A portion of the high voltage transmission system surrounding the fault.
The fault is on bus #7 and cleared by removing the line between buses 6 and 7.
Dashed lines indicate several of the transmission lines that were removed to
simulate topology changes.

VI. CASE STUDY – APPLICATION TOTOPOLOGYCHANGES

In this section, a case study is performed on the IEEE 50-
generator system to show how the Fisher feature selection
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TABLE IV
COMPARISON OF NEURAL NETWORK PERFORMANCE BASED ON FEATURES SELECTED FROM A

SINGLE SYSTEM TOPOLOGY AND MULTIPLE SYSTEM TOPOLOGIES

technique can be used to select features that are independent of
system topology. The system topology refers to the operating
status of the numerous devices connected to the system.
Selecting features that are independent of topology is important
since the topology of modern power systems is continuously
changing. These changes are due to many factors including
maintenance, repair, and the addition of new equipment.

Since the system topology is not fixed, special care needs be
taken to minimize the effect of topology changes on the perfor-
mance of the neural network. One approach is to train different
neural networks for each change in topology, and then use the
specific neural network that reflects the current topology of the
system. This approach is only applicable to problems that in-
volve relatively few changes in topology. If a large number of
topology changes need to be considered, the number of neural
networks required becomes very large, and the problem quickly
becomes impractical.

Another approach is to choose features for training the neural
network that are independent of changes in topology. This al-
lows a single neural network to learn the security of the system
with respect to various different system topologies. Features
such as the aggregate generation in a specific area or the flow
on important transmission circuits have been suggested [3]. The
Fisher feature selection technique can be used to select features
that reflect changes in topology, and therefore, provide good
performance even in the event of unexpected topology changes.
This can be done by applying the Fisher selection technique
to a training database that contains examples of as many dif-
ferent system topologies as possible. The Fisher selection crite-
rion then selects the features that work best with regard to the
various topologies.

An experiment was performed to test the performance of the
Fisher technique for selecting topology invariant features for
neural network training. The experiment consisted of training
two neural networks with features selected by the Fisher
forward sequential technique. The networks were trained with
data generated from a single 3-phase fault located at bus #7
and cleared by removing the line between buses 7 and 6. The
features for the first neural network were selected based on
a training database generated with a fixed system topology.
The features for the second neural network were selected from
a training database containing 11 different pre-fault system
topologies. The topology changes involved removing various
transmission circuits from the system and then simulating
the fault at bus #7 and calculating the system security. The

topology changes were spread across a wide area of the system
in an attempt to determine the significance of the location of
the topology change with respect to the fault. Some topology
changes consisted of removing 500 KV lines close to the fault
while others were 100 KV lines far removed from the fault.
Table III shows the location and voltage level of each of the 11
topology changes.

Fig. 4 shows a one-line diagram of a portion of the high
voltage transmission system surrounding the fault at bus #7.
Several of the transmission lines that were removed as a result of
the topology changes are shown as dashed lines, the rest occur
further from the fault and are not shown.

The training data files for each neural network were created
from the same raw data file, which included a fixed pre-fault
system topology. The first neural network was trained with fea-
tures 112-Q, 104-P and 111-P, while the second neural network
used features 111-Q, 104-P and 110-Q. The features correspond
to the either the real (P) or reactive (Q) generator power outputs
at the given buses. As previously mentioned, the features for
the first neural network were selected by the Fisher method ap-
plied to a data file consisting of a fixed system topology, while
the features for the second neural network were derived from a
data file with multiple system topologies. Both neural networks
were tested with a data file composed of 641 patterns with 11
different system topologies. Five training runs were performed
for each network to assess their performance on the testing file.
The results are shown in Table IV.

It can be seen from Table IV that the neural network trained
with features selected from data containing multiple system
topologies resulted in nearly a full order of magnitude reduction
in testing error. This is a remarkable result considering the
neural network was trained with data consisting of only a single
system topology! This test clearly shows the importance of
selecting features that are independent of changes in system
topology and shows that the Fisher selection technique can be
effectively used to select such features.

VII. CONCLUSION

The Fisher linear discriminant function coupled with the
sequential feature selection technique has been proposed as a
means for selecting neural network training features for power
system security assessment. Through a statistical analysis, it
was shown that the Fisher technique was able to select a feature
set in the top one percentile of all possible feature sets. A case
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study was performed to illustrate how the Fisher technique
can be used to select neural network training features that are
independent of changes in power system topology. The pro-
posed methods were tested on the IEEE 50-generator transient
stability test system and excellent results were demonstrated.
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