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Abstract
This paper presents a new method for enhancing the

accuracy of partially trained multilayer perceptron neural
networks in specific operating regions.  The technique is an
extension of previously published query learning algorithms
and uses an evolutionary-based boundary marking algorithm
to evenly spread points on a contour of interest - in this case
the power system security boundary.  These points are then
presented to an oracle (i.e. simulator) for validation.  Any
points that are discovered to have excessive error are then
added to the neural network training data and the network is
retrained.  This technique has advantage over existing
training methods because it produces training data in regions
that are poorly learned and thus can be used to improve the
accuracy of the neural network in these specific regions.
An example of the proposed algorithm is applied to the
IEEE 17 generator test system.

1. Introduction

The modern trend towards deregulation is altering the
manner in which electric power systems are operated.  In the
past, electric utilities were able to justify improvements in
system infrastructure based solely on security
considerations.  In a deregulated environment this is no
longer the case.  Economic pressure tends to delay
construction of new facilities.  Therefore, utilities are being
forced to operate their systems closer to their security
boundaries.  This demands the industry to develop better
methods of quantifying the real-time security status of their
systems.

Several researchers have investigated the use of neural
networks as a means to predict security status of large
electric power systems [1-3].  Neural networks provide a
mapping f(x)=S, where f(.) is the network function, x is a
vector of network inputs and S is the corresponding security
status of the power system.  Neural networks offer several
advantages over traditional security assessment methods
including faster execution times and the ability to model the
entire power system in a compact and efficient form.

McCalley et al. proposed the idea of using neural
networks as a means of creating nomograms customized to
the current operating status of the power system [4].
Nomograms are usually 2-dimensional plots showing the

relationship of system control variables to the security of the
system.

 In [4], a multilayer perceptron neural network was
trained to learn the security status of a power system given a
set of precontingency operating variables.  Nomograms were
then created by fixing a subset of the network input variables
and adjusting the remaining variables to find the set of
points
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Repeated application of a simple one-dimensional root
finding technique was proposed to generate two-dimensional
nomograms.  An example of a typical nomogram is shown in
Figure 1.

 Jensen et al. [5] proposed a similar idea using an
inversion of a trained neural network to extract information
relative to the operation of the system.   A gradient based
neural network is used for the inversion algorithm to extract
power system operating information such as the location of
the security boundary to a given operating state.  This
information  is used to either avoid insecurity or to regain
security once  lost.
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Figure 1 Nomogram for two parameters
showing three security levels
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Both of the above applications are based on searching the
functional relationship of a trained neural network.
Therefore, the accuracy of the neural network is critical to
their performance.  It is especially important that the neural
network be accurate in operating regions of interest such as
near the security boundary.

This paper presents a new evolutionary-based query
learning algorithm whereby the accuracy of a partially
trained neural network can be increased.  Moreover, the
proposed algorithm is particularly well suited to quantifying
and improving performance in specific regions of interest,
such as security boundaries.  The system is based on a
boundary marking technique originally proposed by Reed
and Marks [6] which makes use of an evolutionary algorithm
to spread points evenly on a contour of interest.  These
points are then verified via simulations thus quantifying the
accuracy of the security boundary.  Areas of inaccuracy can
then be improved by augmenting the training data base and
retraining the neural network.

 Section 2 of this paper deals with issues involved in
training neural networks for power system dynamic security
assessment including; data gathering, training and
validation.  Section 3 introduces the concept of evolutionary
algorithms and the proposed query learning technique of this
paper.  Section 4 describes the application of this technique
to the creation of nomograms and the location of critical
operating regions using the IEEE 17 generator transient
stability test system as a case study.  Finally, conclusions are
presented in section 5.

2. NN's for DSA

Neural networks have demonstrated the ability to
approximate complex nonlinear systems when presented
with a representative sample of training data.  Several
researchers have reported remarkable results when applying
the multilayer perceptron neural network to the power
system security assessment problem [1-3].  Typically,
traditional methods such as time domain simulations [7] or
energy function methods [8] are used to generate a database
of training data.  This database includes examples of all
power system operating scenarios of interest described by a
set of selected power system features as well as their
resulting security measure.  The neural network then adapts
itself to the training database and produces an approximation
to the security assessment problem in the form an equation
f(x)=S, where f is the neural network function, x is the vector
of power system features and S is the resulting security
index.  Examples of commonly used security indices include
energy functions and critical clearing times [7,9].

A key advantage of using neural networks is the ability to
extract operating information after training via neural
network inversion techniques [10-12].  Neural network
inversion is the process of finding an input vector that
produces a desired output response for a trained neural

network.  For example, consider a neural network trained to
predict the security S of a power system given a vector of
system features x.  By clamping the output value S to the
marginally secure state, say S=0.5, where S=1.0 is secure
and S=0.0 is insecure, and inverting the network, a
marginally secure state x' can be found in the input space.
This state then describes a region of the power system
operating space where insecurity is likely to occur.  It should
be noted that since the neural network is typically a many-
to-one mapping,  the inversion is generally not to a unique
point, but rather to some contour in the input space.

In this paper we used the IEEE 17 generator transient
stability test system as a case study.  We used the EPRI
energy margin software package called DIRECT [13] to
create the training database for the neural network.  Software
was written to automate the data gathering process by
repeatedly running the DIRECT software to calculate the
system energy margin for a single fault under many different
prefault operating states.  The database consists of a set of
prefault system features, in this case generator settings and
system load, and the corresponding system energy margin.
The DIRECT software determines the energy margin, which
is related to the security of the system, by assigning a
positive energy margin to secure states and a negative
energy margin to insecure states.  The magnitude of the
energy margin indicates the degree of stability or instability.

A software package called QwikNet [14] to design and
test the neural network was used.  QwikNet is a remarkable
windows based neural network simulation package that
allows experimentation with many different network
topologies and training algorithms.  After training, the neural
network function, f(x)=S, can be written to a file in a
convenient C programming language format that can easily
be incorporated into the inversion software.

3. Evolutionary-Based Query Learning Algorithm

Query learning [15-16] is a method that can be used to
enhance the performance of partially trained neural
networks.  Query learning is based on the notion of asking a
partially trained network to respond to questions.  These
questions are also presented to an oracle which always
responds with the correct answer.  The response of the
neural network is then compared to that of the oracle and
checked for accuracy. Areas that are poorly learned by the
neural network can be thus identified.  Training data is then
generated in these areas and the network is retrained to
improve its performance.

The query learning procedure proposed in this paper is
an extension of previously proposed methods.  The principle
difference is that instead of locating and then querying
individual points, our algorithm works with a population of
solutions, thus offering the ability to query entire areas of
interest.  This algorithm also seeks to evenly distribute the
points across the area.  Evenly distributing the points is



important because a global view of the security boundary in
multiple dimensions is provided thus allowing the entire
boundary to be queried and potentially improved.  After the
points are spread, they are simulated via the energy margin
simulator and their true security index is determined.  If all
the points are within tolerance the algorithm stops.
Otherwise, the points with unacceptably large errors are
added to the training database and the neural network is
retrained

In the evolutionary boundary marking algorithm, all
reproduction is asexual, i.e. no mating or crossover takes
place.  Offspring are produced as perturbations of single
parents.  This concentrates the search in the area close to the
security boundary and speeds convergence.  The algorithm
seeks to minimize a fitness function, F, of the following
form;
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where,
f     is the neural network function,
x is the current point,
S is the security boundary, and

avgD average distance to the nearest neighbors

The evolutionary algorithm is randomly initialized with  N

points and then proceeds as follows.
1. The population is sorted based on fitness, F.
2. The M points with the lowest fitness scores are

deleted.
3. Replacements are generated for each deleted point:

(a) M parents are selected proportional to fitness
from the remaining points.

(b) New offspring are created as perturbations of
the selected parents, nxx += parentnew ,

where ),0(~ σNn .
(c) Feasibility constraints are enforced on the

new offspring via the solution of a standard
power flow.

4. Repeat until  convergence.

By successively deleting points with poor fitness values and
replacing them with perturbations of points with high fitness,
the population tends to spread evenly across the solution
contour.  Typical values used in this paper are N=100,
M=20, m=3 and σ =0.05.

Figure 2 shows histograms of the initial and final
population distributions.  It can be seen that the final
population has converged to the security boundary and is
evenly spread across the boundary.  These points are then
added to the training database and the network is retrained.
Several iterations of query learning may be required produce
acceptable results.
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Figure 2 Histograms of the initial population and final population of the boundary marking algorithm



4. Case Study – IEEE 17 Generator System

The IEEE 17 generator transient stability test system [17]
is used to illustrate the performance of the proposed
algorithm.  This system consists of 17 generators and 162
buses.  The EPRI energy margin software DIRECT is used
to determine the energy margin of the system in response to
a single three phase fault.  Twelve system features are
selected to represent the system for neural network training.
These include the real and reactive powers of the 5
generators closest to the fault location and the total system
real and reactive load level.  A training database of 436
samples was created for initial training of the neural network
by randomly perturbing generation settings and system load
levels and then simulating each case on the energy margin
software.  The initial RMS neural network testing error was
0.113 corresponding to a test database that was not used for
training.

The proposed query learning algorithm was then used to
generate additional training samples near the security
boundary.  These  points are simulated on the DIRECT
energy margin simulation software and the points with large
errors are added to the training data file.  The final training
database consisted of 1177 training samples and the final
RMS test error was reduced to 0.062.

Nomograms were then created from the initial and the
enhanced neural networks based on the method proposed in
[4].  These nomograms show the relationship between two
generator power outputs and the security boundary.  The two
nomograms are shown in Figure 3 along with the true
nomogram which was created by repeatedly querying the
simulator.  It should be noted that the nomogram of the
simulator as shown in Figure 3 required smoothing by fitting
a 2nd order polynomial to the raw data.  The smoothing
operation is required due to the approximations and
assumptions made by the simulation software.  The RMS
error for the initial nomogram is 48.53 while the enhanced
neural network nomogram is 10.11.  This experiment proves
the viability of the proposed technique in increasing the
accuracy of a partially trained neural network near the
security boundary.

5. Conclusions

This paper presents an enhanced query learning
algorithm that effectively locates regions of interest and
distributes neural network training data in these regions.
The  process is used to enhance the accuracy of partially
trained neural networks in specific operating regions.  The
proposed technique is applied to the problem of generating
power system operating nomograms from neural networks.
Results show a nearly 5 fold improvement in RMS error
when applied to the IEEE 17 generator test system.
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