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Abstract - A technique for the detection of shorted turns in
the field-windings of operating synchronous turbine-
generators is described. The measuring method used is the
twin-signal sensing method, where pulses are injected into
each terminal of the rotor. The reflected signals are
subtracted to produce a signature signals that contains
information about the rotor’s state. The signature signals
are sampled and accepted or rejected as valid based on an
outlier detection criteria. Novelty detection is applied to
the accepted signals. The current signature signal is
compared to a range of signature signals taken when the
rotor was known to. be free of shorts. If the current
signature signal strays too far from the known healthy
signal, the signature signal is ‘novel’ and the possibility of a
short is declared. The method was tested on a running test
rotor with voltage excitation. A comparison of methods
shows that an elliptical novelty grouping algorithm gives
highly accurate results.

Keywords: novelty-detection, shorted-turn-detection, on-
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Introduction

Early detection of shorted turns in the DC-field windings
of large synchronous turbine-generators is a very difficult
problem. No general solution has been thus far proposed.
Shorted turns can cause vibrations in the machine and
eventually can lead to hazardous mechanical breakdowns. With
periodic maintenance to avoid such catastrophes, significant
down time cost is incurred even when no faults are present in
the rotor. Condition based maintenance as a result of on-line
short-detection will thus be extremely valuable in terms of
operating cost reduction.

Several techniques for detecting shorted windings have
been suggested in the literature. Some are not applicable for
on-line use. Most require placement of probes inside the rotor.
A good survey of past methods is presented by Streifel ef al.[1]
who also describes the twin-signal sensing technique - a
method not suffering from this disadvantage. In twin-signal
sensing, two sharp voltage-steps are simultaneously injected
PE-059-EC-1-09-1997 A paper recommended and approved by the
IEEE Electric Machinery Committee of the IEEE Power Engineering
Society for publication in the IEEE Transactions on  Energy

Conversion. Manuscript submitted May 5, 1997; made available for
printing October 3, 1997.

into both ends of the device windings. The difference between
the reflected waveforms is measured, giving a signature signal
for the rotor.

A specific test rotor was built to simulate the combined
effect of applied voltage and rotation, with quick accessibility
to the windings for shorting between adjacent turns. The test
rotor is a three foot long iron core, with four wound poles
connected in series. The rotor is wound with polymer insulated
stranded wires lying in 12 slots, evenly distributed around the
circumference of the core, with inner and outer windings
alternating in these slots. Rotation is provided by an external
motor, and slip-rings connect the rotor windings to the voltage
supply and the measuring circuit at one end. At the other end,
the windings are accessible for connecting two and two of the
wires together to produce shorts.

Twin-Signal Sensing Method

To implement the twin-signal sensing method, a dedicated
signaling circuit was built to provide a sharp leading edge
signal of alterable voltage levels, synchronous to the AC power
source. The circuit is floating on the same voltage as the rotor
to protect it from high voltage. A differential amplifier is used
for taking the difference of the reflected waveforms.

The twin-signal sensing method has proved to be
successful in detecting shorts

e in simple units like autotransformers [1], and
e for localizing shorts in a downed rotor [2].

No excitation was present in these tests so the effect of loading
on the signature signals was unknown. Rotation also causes
noise from the slip-rings/brush interface. There is also a
different impedance sensitivity in the windings for rotating
units. The shape of the signature signal can be significantly
altered because of this.
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Signal Pre-selection and Outlier Detection

Siganture signals from rotating units can be corrupted by
interference from “jumps” at the slip-ring/brush interface. A
method of outlier detection is therefore necessary to avoid
training the detector on irrelevant waveforms. Outlier detection
is used to detect the signatures that differ markedly from a set
of previous signatures. A given batch of signature signals is
gathered (50 signatures in our case) from which an average and
standard deviation are calculated. All signatures landing within
three standard deviations from the average are declared as valid
and used to train the novelty detector. The signatures in the
first average are then re-checked. The resulting average is then
used to test the incoming signature’s outlier status. The outliers
are far from signature signals for both the shorted-turn and no-
short cases. Their elimination is therefore straightforward.

Novelty Detection

In novelty detection, the status quo signal “fingerprint” of
healthy operation is monitored. If the fingerprint samples
remain in the a region normally prescribed for healthy
operation, there is no reason for alarm. If the fingerprint drifts
significantly from status quo, however, something novel has
occurred. Degradation - in our case the forming of a winding
short - is suspected.

Novelty detection is useful in cases where data corresponding
to “unhealthy” system conditions is unavailable. Such is the
case for detection of shorted windings. Obtaining signature
signals for operating rotors with shorted windings is
prohibitively expensive.

Novelty detection can be conceptually viewed as a method of
grouping all signals of a given training set and comparing future
samples with this group. The underlying assumption is that the
training set is statistically representative of all status quo
operating conditions and that the system from which the
samples are obtained is not time variant. View each healthy
signal as a point is signal space. A surface is imposed around
these points. If a new signal lies within this surface, it is status
quo. Otherwise, it is novel.

Surfaces that can be placed around the healthy data include
e aspherical boundary,
e an elliptical boundary,

e arectangular boundary formed by the extrema of the data,
or min-max surface, and

®  nearest neighbor boundaries.

In the first two methods, incoming signatures are compared to a
given prototype signature. The result is declared novel if the
signal exceeds a given distance from this prototype. For the
spherical boundary, the distance is a standard Euclidean
measure and is therefore equivalent to a matched filter. When
an elliptical boundary is determined along the data’s
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eigenvectors, the Mahalanobis distance from the prototype is
being used. (The Euclidian distance is a special case
corresponding to equal eigenvalues.)

For the min-max technique, the smallest possible box
containing all of the healthy data is used. The dimensions of
the box are determined by the minima and the maxima of the
signature signals. This is equivalent to finding upper and lower
bounds for all of the healthy data. These two signals uniquely
define the box by its vertices. After the box is defined, each
linear dimension of the box may be proportionally enlarged or
compressed depending the desired performance of the min-max
novelty detector.

The nearest neighbor novelty detector allows for more general
data topology. Here, minimum Euclidean distances are found
between each point and its closest neighbor. The distance
proportional to the maximum of these distances is then used as
a decision parameter. Every incoming point is compared to
every point in the healthy training set. If the new point is at a
greater distance from each of the healthy points than the
decision parameter, it is declared to be novel.

Novelty detection can be couched in the paradigm of
hypothesis testing.

Hy : status quo (no winding shorts)
H, : awinding short is present.

The binary hypothesis test considers a given hypothesis Hy that
is to be proved, versus an alternative hypothesis H;. In our
case, Hp is the hypothesis that the rotor is healthy. H; is the
alternative hypothesis that the rotor has shorts. In marking a
decision, two types of error can occur. The false alarm
probability is

o

1l

Probability[ H, is announced given H,, is true ]

Probability[ a short is erroneously announced ].

and the detection probability is

B

Probability[ H, is announced given H; is true ]

1}

Probability[ a short is correctly announced ].

For problems where novelty detection is used, the detection
probability can not generally be estimated. This is due to the
unavailability of shorted winding signatures. In other words,
we have no data corresponding to when “H, is true”. The false
alarm probability of the novelty detector, on the other hand, can
be straightforwardly evaluated. After the novelty boundary is
established using status quo training data, additional status quo
test data is collected. The percentage of times a short is
announced from the test data is an estimate of the false alarm
rate. The law of large numbers assures convergence as the
cardinality of the test set increases.

There is an inherent tradeoff between the false alarm rate, o,
and detection rate, B. As one increases monotonically, so does
the other. Each of the novelty detectors described has a
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parameter that allows tuning of this tradeoff. In the spherical
and ellipsoidal cases, it is the choice of radius (Mahalanobis
distance). As the radius increases, both the detection and false
alarm probabilities increase monotonically. For the nearest
neighbor detector, the tradeoff is similarly determined by the
ball drawn around each training data point. The o and B
parameters for the min-max detector are tuned by the choice of
padding about the detection box region.

The only way of controlling the performance in novelty
detection is to define an acceptable false alarm rate not to be
exceeded by the training set (see e.g. [12]). An alternate
method for setting the threshold, not considered here, requires
the finding of threshold from the allowable false alarm
probability from parametrical estimators. This method requires
an assumption about the probability distribution of the data.

Other types of novelty detection have been suggested.
One, often referred to as the novelty filter [3], compares the
orthogonal complement of the linear space spanned by the
training set to a threshold. In geometrical terms, this method
tries to fit a hyperplane to the data. Only the orthogonal
distance to the hyperplane is considered. Such an approach is
useful only when the healthy data are known to lie in a
hyperplane. Other approaches assume that the healthy data lie
in clusters. These were also not applied to our problem since
the healthy data appeared in one large cluster. One example is
use of radial basis neural networks [9,11] as a method of a
non-parametric estimation of the data’s a priori distribution
have also been applied to novelty detection [4]. A statistical
semi-parametric  estimation technique defining several
hyperellipsoidal clusters is described in [5] and applied,
extended, to novelty detection in [6]. This is an extension of
the elliptical boundary detection to multiple clusters. A robust
statistical method for finding elliptical clusters is defined in [7].
Nonlinear statistical estimation is applied in [8] where a neural
network is trained to recognize a mapping of any given
probability  distribution to an uncorrelated Gaussian
distribution. This is done with an information preservation
criterion, and a simple spherical boundary detection is then
applied.  Other methods exist such as ART clustering
techniques (see e.g. [11]), which automatically defines new
clusters as something new is observed.

Which novelty detection approach works best? The answer
depends on the structure of the healthy data. We will show that
the elliptical novelty detector gave the best performance on the
healthy data collected for our system operating rotor under
load. In the test of the performance of the elliptical filter, there
was rare availability of shorted winding signatures. This
allowed testing for the short detecting capability of the novelty
detectors.

Short Detection of Excited Running Rotor

The 4 pole rotor used for this test was constructed in the
CIA Lab at the University of Washington to simulate the effect
of rotation and voltage load in larger rotors. Even though the
luxury of shorted winding data will not be available for
operational rotors in the field, the prototype rotor was
constructed to allow collection of such data. A set of signatures
was gathered for the rotor at several operating stages. Three
operating speeds were examined separately.

1. stopped rotor,
2. turning-gear speed, and
3. rotor running at a full speed.

The stopped rotor situation is similar to off-line testing except
that the signature signal is obtained through the brushes (see
e.g. [2]). The rotor is in turning-gear when it is rotating very
slowly - in our case at 30-60 rpm. The fast rotating rotor ran at
the synchronous speed, 1800 rpm, to simulate a four-pole
turbine-generator in full operation.

0.8r L —— Stopped Rotor 4

I +++ Turning-Gear|
-— - Full Speed

0 0.5 1 15
Time [s] <10

Figure 1: Typical signatures signals for different rotor

speeds under no load. The variations were sufficiently

different to require separate novelty detectors for each
speed.

Three different novelty detectors were constructed
corresponding to speed. This approach was motivated by the
observation that the signature signal changed significantly for
varying speeds (see Figure 1). The full-speed rotation provided
by the external machine strongly affects the signature waveform
through slip-ring noise and general impedance change in the
windings at the higher frequencies. However, the stopped rotor
and turning gear signatures seem to coincide. Due to the
similarities, combining the stopped rotor and turning gear ratio
novelty detectors into a single detector is a possibility in future
studies.
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Figure 2: Signature signals of healthy status quo signals
obtained from a rotor operating at full speed (top) and
stopped (bottom) under different loads. The two
dimensional plane for both cases is obtained from the two
largest principal components of the data. Although there is
minor drift, the data in both cases clusters nearly
independent of the load. For a given operating speed, this
is the case generally. Thus, the shorted winding novelty
detector need not be parameterized by load.

A given novelty detector was expected to perform over a large
range of loads. The variation of the signature signals under
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varying loads at the same speed, as shown in Figure 2, was not
as significant.
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Figure 3: Signature signals for a stopped rotor with
shorted turns

Five current levels between 0 and 1.6 A were used in all of
the training sets. Every training set consisted of 1000
signatures, taken in sets of 50 each at different times during one
day. The novelty detectors designed from this data were tested
against five “healthy” test sets, taken over a period of 3 days.
Each of these had 200 signatures, so a total of 1000 signatures
of healthy data were tested. Shorts were induced around all the
poles of the rotor, three for each inner winding and two for each
outer. This was also done for all the same operating conditions
described above. For each position of shorted turn and voltage
level, 10 samples were taken or a total of 1000 signatures for
each speed. Figure 3 shows examples of some shorted-turn

signatures compared to a typical non-shorted one. The
variation is significant enough to be detected.
Table 1: Detection results for voltage-excited
running rotor.
Stopped Turning- Full Speed
Rotor Gear Rotor
Detection o B o B o B
Method % % % % %o %
Spherical 00]838| 00853 00]650
Min-Max 63.6 | 100|329 100 | 0.8]928
Nearest Neighbor | 56.2 | 100 | 00| 100 0.1 ] 793
Elliptical 00| 100] 0.0] 100| 04910

The feature vector used is the time signature waveform,
sampled at 20 MHz and decimated (downsampled) by 4 to
reduce computation. Experience showed the decimation did
not effect performance. Decimation gives 75 points in the
signature.  No additional feature extraction method was
applied.
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Figure 4: False alarm, o, and miss rate, 1-3,

for different thresholds. This plot, shown for the rotor at
full speed, is typical. The false alarm rate can be read from
the curve on the left and the miss rate from the curve on the

right. For novelty detection, the miss rate can not, in

general, be measured as it is in this case. Thus, although

there exists a threshold corresponding to low false alarm
and miss rate for each detector, it can not, in general, be set

by observing these curves.

Table 1 shows the detection results obtained for the different
operating stages. The false alarm rate, o, is averaged over the
five acquisition periods while the detection probability, B, is
from signatures obtained over a 24 hour period. The best
performance came from the elliptical novelty detector. The

reason for the significant performance deviation will become
obvious shortly.

Figure 4 shows us plots of o (left hand curves) and 1- (right
hand curves) for varying thresholds. All methods give good
results for the proper threshold. In practice, however, the miss

probability cannot be estimated since data for shorted windings
is not available.

Discussion

The difference in performance among these grouping
algorithms is considerable. For independent features, the min-
max method is equivalent to N=75 two-sided hypothesis tests,
where N is the dimensionality of the feature vector. For
example, if the probabilities of exceeding each of the thresholds
were 0.1% from a given distribution, there would still be 7.2%
probability of being outside the “healthy region”. The spherical
threshold has lower detection rate than the other methods and
suffers from being too general. The data, we will show, is
spread in more of elliptical cloud. The sphere simply provides
too large of a region for the status quo data.

How are different novelty detectors compared when the shorted
winding detection rate can not be measured? One approach is
to compare the volumes of the various status quo regions for a
given false alarm rate. The region with the smallest volume can
be interpreted as the most efficient representation of the status
quo region. The elliptical boundary detection method confines
the training set far better than the other methods, as measured
by their volumes (see Table 2).

Table 2: A one-dimensional metric of confined volumes of
detection surfaces. This is the N-th root of the volume
where N=75 is the number of dimensions in the
feature space.

Detection Stopped Turning- Full
Method Rotor Gear Speed
Spherical 0.279 0.244 0.372
Min-max 0.086 0.118 0.193
Nearest neighbor <0.051 <0.105 <0.188
Elliptical 0.042 0.060 0.092

Based on the metric of volume for as fixed false alarm
probability, the elliptical boundary is much more efficient than
the others. The reason becomes clear as higher order
components are examined. Figure 5 shows a two dimensional
slice of the data on the plane defined by the first two principal
components' of the healthy training data. The healthy data,
shown by small hollow circles, is tightly packed. Data from
shorted windings is shown by ex’s.  The shorted winding data
clusters in accordance to the location of the shorted winding on
the rotor. Note, in Figure 5, the numerous small balls drawn
around the status quo training data. These balls form the
nearest neighbor novelty detection. The larger circle in Figure
5 corresponds to the spherical novelty detector. The ellipse
from the elliptical novelty detector is so large in this plane that
it is visible only in the corners of the figure box. The min-max
novelty detector - not shown - is the smallest box that contains
all of the healthy training data. In this figure, it appears that the
elliptical novelty detector erroneously classifies some of the
shorted winding data. This need not be true, however, for other
dimensional slices of the ellipse.

The reason for the superior performance of the elliptical
novelty detector is made evident in Figure 6. Here, data from
the same problem is shown on the two dimensional plane
defined by the 30™ and 31% largest eigenvalues of the healthy
test data. On this plane, the spherical novelty detector is so
large that it shows only in the corners of the figure. The data in
this planar slice is extremely compact. The nearest neighbor

' The N signature signals, {s,| I <n < N}, are lined into N column
vectors to form the matrix S = [ s, 5, s3 __ sy]. The eigenvalues and
eigenvectors of the correlation matrix STS are evaluated. The

eigenvectors corresponding to the larger eigenvalues are the data’s
principal components.




balls are nearly aligned. The elliptical novelty detector
boundary in this plane. almost circular, lies in the interior of the
nearest neighbor balls. Shorted winding signatures, falsely
classified by the nearest neighbors balls, are successfully
categorized by the elliptical novelty detector.

Figures 5 and 6 reveal why the elliptical novelty detector
surpasses the circular and nearest neighbor novelty detectors - it
scales sizes in different dimensional slices. The spherical and
nearest neighbor classifiers consist of balls. Balls have the
same extent in all dimensions and are therefore unable to adapt
in planes where the data becomes compact.

Lastly we note, as might be expected, that signature signals
from a winding short in a given location tend to cluster. This is
illustrated in Figure 7. On the top is shown the shorted winding
data for the full speed operating rotor on the principal
component plane. The separation for this case is even more
dramatic when viewed on the plane specified by the tenth and
eleventh largest eigenvalues. This is shown in the middle of
Figure 7. As is shown on the bottom, the shorted winding data
also clusters according to the short location when the rotor is
stopped. We again emphasize that, in most novelty detection
applications, shorted winding data will not be available.
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Figure 5: Stopped rotor data and boundaries projected
onto the two principal components of the healthy training
data.
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Figure 6: Stopped rotor data and boundaries projected
onto higher order principal components. In this plane, the
elliptical novelty detector is clearly the most discriminating.

Conclusions

On-line short detection in the field windings of operational
asynchronous turbine generators will significantly improve
maintainability. Twin-signal sensing for monitoring has the
advantages of being simple, on-line and efficient. This paper
shows twin signal sensing can result in superb detection
performance. The novelty detector providing the lowest false
alarm rate for the unit we considered is the elliptical grouping
algorithm. It also generates the lowest volume in novelty
detection space of those techniques considered. The result is
less than 0.4% false alarm rate and at least 91% detection rate
for a fully operational test-rotor.

In practice, healthy status quo test signal data should be taken
and analyzed. The manner in which the data is distributed in
signal space will suggest the best novelty detector for that
specific case.
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