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For accurate prediction of normal tissue tolerance, it is important that the volumetric information of
dose distribution be considered. However, in dosimetric optimization of intensity modulated beams,
the dose–volume factor is usually neglected. In this paper we describe two methods of volume-
dependent optimization for intensity modulated beams such as those generated by computer-
controlled multileaf collimators. The first method uses a volume sensitive penalty function in which
fast simulated annealing is used for cost function minimization~CFM!. The second technique is
based on the theory of projections onto convex sets~POCS! in which the dose-volume constraint is
replaced by a limit on integral dose. The ability of the methods to respect the dose–volume
relationship was demonstrated by using a prostate example involving partial volume constraints to
the bladder and the rectum. The volume sensitive penalty function used in the CFM method can be
easily adopted by existing optimization programs. The convex projection method can find solutions
in much shorter time with minimal user interaction. ©1998 American Association of Physicists in
Medicine.@S0094-2405~98!01004-9#

Key words: beam intensity modulation, optimization, dose–volume constraint, convex set, cost
function
ne
e
d
r
ic
m
rm
lo
a
.
an

f
or
y
o
m

e
me

za-

n-
a
to

be
in-
ly,
n-
he

ive
if-
sts

p-
s.
e-
I. INTRODUCTION

Optimization of intensity modulated beams can be desig
to satisfy either dosimetric prescriptions or biological r
sponse specifications. While biological models can more
rectly measure clinical outcome, they still remain in the fo
mative stages.1 On the other hand, prescription in dosimetr
unit has been well established as the clinical norm. Co
monly, dosimetric strategies seek to deliver a high, unifo
dose to the target while maintaining the organ dose to be
tolerance. However, organ tolerance is more accurately
sessed by the volumetric information of dose distributions2,3

Importance of the volume effect has been recognized
quantified as early as 1948 by Paterson, who measured
effect of volume on normal skin response to radiation.4 In
1991, volume-dependent normal tissue tolerance data
various organs were tabulated and published by a task f
under NCI contract.5 The results of investigation for nearl
30 different critical tissues were categorized into three v
ume classes: 1/3, 2/3, and whole. For each partial volu
two dose levels, TD55/5~the probability of 5% complication
within 5 years! TD50/5 ~the probability of 50% complication
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within 5 years!, were reported. Reliability of partial volum
data is expected to improve as more clinical results beco
available.

While much work has been done in the area of optimi
tion of intensity modulation,6 physical dosimetric optimiza-
tion subject to volume restrictions has received little atte
tion in the past. Langeret al. proposed a method using
mixed integer linear programming which was applied
compute beam weights of wedged and open fields.7,8 How-
ever, the size of beam optimization problems which may
handled by this method and the applicability to general
tensity modulation problem are unknown. More recent
Bortfeld et al. suggested a method of dose–volume co
straint using a penalty function which is active only when t
organ dose is within a certain interval.9 Carol et al. reported
the concept of an area cost function in which the cumulat
dose volume histogram is subdivided into regions with d
ferent weights. The total cost is a weighted sum of the co
incurred in each region.10

In this paper we describe two methods of dosimetric o
timization of intensity modulation with volume restriction
The first method focuses on a formulation of a volum
435…/435/9/$10.00 © 1998 Am. Assoc. Phys. Med.
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sensitive penalty function in which fast simulated anneal
is used for cost function minimization~CFM!. The second,
the method of projections onto convex sets~POCS!, does not
use an objective function. Instead, the constraints are
pressed in convex sets. Convergence to a solution is acc
plished by alternately projecting between these convex s
We apply these algorithms to the problem of intensity mo
lated beam optimization under dose–volume constraints

II. METHODS

A simplistic strategy for imposing the dose–volume r
strictions would be to partition the organ according to t
dose–volume requirements and assign appropriate u
bounds to each segment. For instance, if the volume di
bution requires that no part of an organ receive a dose hig
than 50 Gy and that no more than 30% receive a dose gre
than 40 Gy, then the organ can be divided into 30/70% s
ments with upper bounds set to 40 and 50 Gy, respectiv
In this way, the problem is reduced to the case of multi
organs with different upper dose limits. After pre
partitioning of the organ, any of the existing inverse metho
can be applied to achieve conformal plan optimization w
dose–volume constraints. The major difficulty with this a
proach is that arbitrary partitioning may not guarantee
best results. For instance, the region closer to the target
ume will most likely receive a higher dose and, therefo
partitioning should be carried out to assign the higher of
two upper bounds to these areas. However, it may be d
cult to approximate the optimal dose distribution within t
organa priori, especially for complex beam-anatomy co
figurations. Therefore, for this method to be effective,
would be necessary to perform optimization over all feasi
organ volume partitions. This would be a cumbersome ta
More practical methods are described in the following.

A. Volume-sensitive cost function minimization

Consider an organ at risk which requires that no part
ceive a dose greater thanE1 and that no more thang
3100% of volume receive a dose exceedingE2 . N repre-
sents the total number of uniformly sampled points over
volume. During the iterative optimization process, a doseDk

is calculated for each sample point. From these doses
fraction of the organ receiving a dose greater thanE2 , de-
noted byg8, is determined. Then a volume-sensitive co
straint in discrete form may be written as

P5lV(
k51

N

Ck , ~1!

where

Ck5 H ~Dk2E1!21E1 , Dk>E1 ,
Dk , Dk,E1 , ~2!

and

V5H S g8

g D 2

, g8.g

1, g8<g

. ~3!
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The volume-dependent termV has the value of unity when
g8<g. Thus there is no additional penalty on organ irrad
tion when the volume constraint is met. However, the b
penalty given by Eq.~2! is amplified as the fraction of vol-
ume elevated to dose above the limitE2 begins to exceed the
specified volumeg. The penalty functionP is further
weighted by the multiplierl, which gives the ability to fine
tune the constraint. The total cost function is formulated
the usual way11 by summing the target objective and th
penalty functions:

F5
1

NT
(
i 51

NT

~Di2TD!21(
j 51

M
Pj

Nj
, ~4!

whereTD is the prescribed dose to the target andDi is the
dose at a target sample pointi . P1 throughPM are the dose–
volume constraints forM normal tissue regions given by Eq
~1!. Each term is normalized to its respective volume wh
is proportional to the number of uniformly distribute
sample points,NT ,N1 ,...NM .

Minimization of the cost function was performed by th
simulated annealing method.12,13 The stochastic techniqu
has the ability to escape the local minima solutions a
therefore is suitable when the exact behavior of the c
function is unknown. Vectors representing changes in be
strength were generated with Cauchy probability densit14

The n dimensional Cauchy distribution was sampled
spherical coordinates according to the scheme suggeste
Mageras and Mohan.15 The width parameter of distribution
W( l ) at l th iteration was reduced according toW( l )
5W0 /(11 l /Rw), whereRw is a parameter controlling the
rate of collapse. Probability of accepting an uphill change
cost, exp(2DF/T), was reduced by changingT after every
nth iteration according toT( l )5T0 /(11 l /Rt) whereRt is a
control parameter.

For the purpose of systematic tuning of the annealing
rameters, it is useful to first determine the feasible range
theW0 . A reasonable initial value was obtained by choosi
W0 so that the peak of the joint Cauchy distribution corr
sponded to a beam strength step size in which the dose a
isocenter changed by a fraction of the maximum dose.
use the formula,

W05
0.5

TPD
A 2n

n21
, ~5!

whereTPD is the total dose contributed from all the penc
beams at the isocenter and 0.5 means that the desired i
step size is 50% of the target prescription. With theW0 se-
lected, the initial temperature was determined after sev
trial runs while keeping the control parametersRw and Rt

fixed. Initially, Rw andRt were assigned relatively large va
ues and large iteration numbers were used to ensure con
gence. Afterward, the parameters were adjusted to spee
the annealing process. The actual annealing parameters
in this study are tabulated in Table I.
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B. Projections onto convex sets

The theory of convex projections developed
Bregman16 and Gubinet al.17 has been applied to such topic
as sampling theory,18 signal recovery,19 artificial neural
networks,20 image processing,21 and image restoration.22 For
biomedical applications, POCS has been applied to the p
lem of incomplete projection data in computeriz
tomography.23 Recently, the mathematical foundation
POCS in radiotherapy applications has been presented.24 For
the specific case of intersecting linear varieties~hyper-
planes!, POCS is equivalent to Kaczmarz’s alternating p
jection theorem.25

A set of vectors is said to be convex if a linear combin
tion of any two vectors also lies within the set. More pr
cisely, the definition states that a setC is convex if for every
xW1PC and everyxW2PC, axW11(12a)xW2PC for all 0<a
<1. In other words, the line segment connectingxW1 andxW2 is
totally enclosed inC. A useful property of POCS is tha
successive projections between two or more convex sets
nonempty intersection will yield a solution that satisfies
the sets involved. The convex projection method differs fr
other iterative optimization methods such as steep
descent,26 quasi-Newton,27 iterative filtered backprojection,28

and conjugate gradient29 in that it does not form a total cos
function to be minimized. Instead, convergence to a solu
is accomplished through the process of orthogonal pro
tions whose directions are determined by minimizing the E
clidean distance between the convex constraint sets. The
jection operation is analogous to taking the gradient in
cost function based iterative methods.

The framework of POCS theory applied in radiatio
therapy planning has been described previously,24 which
we summarize here. We begin by defining the dose ve
domain in which the convex formulation is made. Assum
that there areQ beams, each beam discretized toN beam
elements. Let the weights of the beam elements fr
the kth beam be written as a column vector,bW k

5@bk1 bk2 ¯ bkN#T. For M sample points, the dose deliv
ered to each point by thekth beam array is given by

F dk~1!

A
dk~M !

G5F ak1
1

¯ akN
1

A � A

ak1
M

¯ akN
M
G F bk1

A
bkN

G , ~6!

whereakn
m is the dose contribution per unit weight from th

TABLE I. Annealing parameters and values.

Trial 1 Trial 2 Trial 3

W0 0.02 0.02 0.02
T0 0.2 0.2 0.2
Rw 1000 1000 1000
Rt 2000 2000 2000

lbladder 3.5 6.0 20.0
l rectum 3.0 9.0 25.0
Medical Physics, Vol. 25, No. 4, April 1998
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nth beam element in thekth beam arraybkn to the pointm.
Equation~6! is simplified by defining the dose computatio
matrix Ak and dose vectordW k as

dW k5AkdW k . ~7!

Then the total dose vector fromQ beams is given by

tW5F t~1!

A
t~M !

G5 (
k51

Q

dW k5 (
k51

Q

AkbW k . ~8!

Now, the dose vector domain in which the constraints
formulated is formed by concatenating the individual do
vectorsdW k for Q beams,

dW 5F d1~1! ¯ dQ~1!

A � A

d1~M ! ¯ dQ~M !
G5@dW 1

TdW 2
T
¯dW Q

T #T. ~9!

A number of useful constraints can be constructed in t
domain. To compute the incident photon fluence modulat
under dose-volume requirements, the following constra
sets are used.

1. Normal tissue dose –volume constraint set

First, we consider the organ dose constraint without v
ume restrictions and assume that the organ dose is sim
required to lie below a certain maximum. It is easy to sh
that in this case the set of doses that lie between 0 and
upper bound is convex. Proof is made by applying the c
vexity condition stated above. According to the definition
convex set, any linear combination of~positive! doses less
than E is also less thanE. For instance, ifE540 Gy, D1

539 Gy, and D2538 Gy, then aD11(12a)D2,40 Gy
for all 0<a<1. This is true for any otherD1,E and D2

,E. Therefore, the organ dose minimization using a sin
upper bound is a convex problem.

Now, the dose–volume constraints require that the or
be subject to multiple dose boundaries. In addition to
upper limit E1 , a portion of the volume must not receiv
doses greater than a secondary upper limitE2 where 0,E2

,E1 . As shown above, the doses that are bound betwee
andE1 do form a convex set. However, in order for a certa
fraction of these doses to remain belowE2 so as to satisfy
the volume demand, the following must hold true:aD1

1(12a)D2,E2,E1 . This condition is guaranteed onl
whenE25E1 , in which case, the constraint is reduced to t
simple case of a single upper limit with no partial volum
requirement. Therefore, the dose–volume constraints ca
be expressed in a single convex set.

We circumvent the problem by using two separate con
sets. The first set constrains the maximum dose to the w
organ while the second limits the integral dose. The fi
pushes the dose–volume histograms toward the origin a
the dose axis and the other along the volume axis. W
applied to the same volume, these two constraints prov
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the ability to manipulate the dose–volume relationship. T
constraint which determines the maximum whole organ d
is convex and is given by

CO15H dWU0<(
k51

Q

dk~m!<E1J , mPS, ~10!

whereS denotes a set of indices corresponding to the sam
points located within the organ. The set dictates that e
dose sample point remains belowE1 . The constraint which
limits the integral organ dose is also convex:

CO25H dWU0< (
organ

(
k51

Q

dW k<I ~ i !J , ~11!

where the outer summation integrates all the dose vec
within the organ volume. Note that the integral dose limiti
parameterI is varied with iterationi . Suppose the fractiona
volume, which is required to remain below the dose lim
E2 , is not compliant, and instead, its upper limit is found
beE28 whereE28.E2 . ThenI is reduced in proportion to the
difference betweenE28 and E2 . Otherwise,I is unchanged.
E28 is updated at each iteration. Projection operations o
C01 andC02 force the dose vector to conform to these se
Details are given in Sec. II B 5.

2. Target dose prescription set

This constraint set requires that the dose in the target
ume be the same as the prescription. The set of dose ve
within the target volume whose sum forms the prescrib
doseTD is convex:

CT5H dWU(
k51

Q

dW k5TDJ . ~12!

Projection onto the target dose constraint set has the effe
minimizing the deviation from the prescription. The proje
tion operator for thekth component is

PT~dW k!5dW k1
1

Q S TD2 (
k51

Q

dW kD . ~13!

3. Beam-dose relationship set

The set of dose distributions that can be generated f
different combinations of beam intensities is convex and
given by

CB5$dW udW k5AkbW k%, 1<k<Q. ~14!

Any dose vector estimates must be a member of this set.
is accomplished by projectingdW k ontoCB . As a rule, projec-
tion must occur between sets existing in the same domain
this case, the dose vector domain. This necessitates tha
beam vectorbW k be expressed in terms of dose vector qu
tity. However, the beam vector cannot be obtained throug
simple inversion ofAk . The difficulty arises from the fac
that, generally, the dimension of the dose vector exceeds
of the beam elements. In other words, the matrix is
Medical Physics, Vol. 25, No. 4, April 1998
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square and, therefore, not invertible. The problem is circu
vented by using the pseudo-inverse method30 to find bW k ,

bW k5~Ak
TAk!

21Ak
TdW k . ~15!

Then the beam-dose transformation is established thro
the projection operator,

PB~dW k!5Ak~Ak
TAk!

21Ak
TdW k . ~16!

4. Non-negativity constraint set
Negative beam fluence is not physically possible. T

non-negativity constraint set requires beam weight to be n
negative. The corresponding convex set is defined as

C15$dW udW k5AkbW k , each element ofbW k>0%, 1<k<Q.

~17!
The projection ontoC1 is

P1~dW k!5H Ak8~Ak8
TAk8!21Ak8

TdW k , bkn,0,
dk , otherwise,

~18!

where the matrixAk8 is formed for negative beam weights
For instance, if thenth element of thekth beam arraybkn is
negative, the matrixAk8 is formed by removing thenth col-
umn of Ak . Thus the projection effectively sets negativ
beam weights to zero.

5. Iterative projections
By iteratively projecting among these five convex se

the beam weights that satisfy the dose–volume constra
and target objectives are determined. For a given dose ve
dW , which does not belong to a constraint setC, the projection
onto C is given by the unique vectorpW PC such that the
distance betweendW and pW is minimum. For instance, the
projection for the integral organ dose limit is formed b
computing the distanceJ,

J5
1

2 (
k51

Q

ipW k2dW ki21lS (
k51

Q

rWTpW k2I D
5

1

2 (
k51

Q

iAkbW k2dW ki21lS (
k51

Q

rWTAkbW k2I D , ~19!

and minimizing it.

]J

]bW k

5Ak
T~AkbW k2dW k!1lAk

TrW50, ~20!

whererW is a structure discriminator whose elements are un
if inside the organ and zero if outside. After solving an
substituting forl, Eq. ~20! is solved forbW k . The projection
vectorpW is found by transformingbW k back to the dose space

pW k5PO2~dW k!55
TkS dW k1

E22u

n
rW D , u.I ,

TkS dW k1
u

n
rW D , u,0,

TkdW k , otherwise,

~21!
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where

Tk5Ak~Ak
TAk!

21Ak
T ,

u5 (
k51

Q

rWTTkdW k , ~22!

n5 (
k51

Q

rWTTkrW.

Likewise, the projection for the other constraints are form
The POCS iteration proceeds as follows:

dW i 115P1~PB„PT~PO2„PO1~dW i !…!…!, ~23!

wherei is the iteration counter. The iterative process is t
minated when improvement in the mean-square distance
tween projections becomes sufficiently small.

C. Application to optimization of beam intensity
modulation

The proposed algorithms were applied to intensity mo
lated beam optimization of a prostate plane. Dose–volu
restrictions were imposed on the bladder and the rect
Upper dose limits were set to 49 Gy and 46 Gy, respectiv
In addition, 60% of the bladder was required to receive
dose less than 25 Gy while the fractional rectum volu
receiving a dose less than 22 Gy was varied in three diffe
trials to attain 65%~Trial 1!, 75% ~Trial 2!, and 85%~Trial
3! volume. Target prescriptionTD in Eqs.~4! and ~13! was
set to 73 Gy. The organ dose constraints for the Trial 1 w
chosen so that further reduction in the upper dose lim
would cause the target volume treated to 95% of the p
scription~V95%! to be less than 100%. Therefore, the alg
rithms were required to operate in the regions where it w
sufficiently challenging to maintain a good tumor covera
The solution goals were to satisfy the dose–volume c
straints for the organs while minimizing the deviation fro
the target prescription. The target and organ contours
tracted from a CT slice~Fig. 1! were discretized into 0.6
30.6 cm2 pixels, yielding 105 target points, 201 bladd
points, and 40 rectum points. Each of the nine equiang
beams encompassing the target was quantized to 19 rays

FIG. 1. External and organ contours for bladder~B!, rectum~R!, and prostate
~T! used to demonstrate the algorithms. The arrows indicate the centra
of the beams directed at the isocenter~1!.
Medical Physics, Vol. 25, No. 4, April 1998
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at the 0.6-cm intervals. The matched dose-ray sampling r
lution permits the use of the same dose points for both
optimization and the computation of dose–volume his
grams. The dose contributions to the dose points from
adjacent rays were precomputed by a simplified dose c
putation model using the tissue-phantom ratios from
18-MV machine. Effects of the scatter and beam penum
were not considered. The model is adequate, however,
the purpose of demonstrating the algorithms.

III. RESULTS

Table II summarizes the dose–volume constraints and
lutions obtained by the two algorithms. Both algorithms we
able to control the dose-volume relationships and satisfy
of the constraints in the process of intensity modulated be
optimization. In both methods, the cumulative dose–volu
histograms for the bladder remained essentially unchan
throughout the trials in agreement with the prescription~Fig.
2!. The rectum curves changed as the partial volume
permitted to exceed 22 Gy was increased~Fig. 3!. Histo-
grams for the rectum reflect the difference in the two alg
rithms. POCS appears to reduce the overall organ dose m
than CFM. This is understood by recalling that POCS co
trols the dose–volume relationship primarily by reducing t
integral organ dose until the constraints are met, while
cost function used in this study tries to suppress the d
exceedingE2 , which corresponds to the fractional volum
prescription. This also explains why in Trial 3, where t
fractional volume requirement was most stringent, the up
limit for the rectum was overconstrained in the case of
cost function method, causing the decrease in the V9
value ~Fig. 4!.

In CFM the constraint parameters,g, E1 , andE2 , were
set to the prescribed values and it was only necessary to
the Lagrange multiplierl to attain the constraint goals. How
ever, several trial runs were required to determine the bel
values for each trial. Solutions were obtained in about 50 0
iterations. In POCS, the adjustment of the allowable integ
dose parameterI was performed automatically, thus elim
nating the need for multiple runs. Convergence was achie
in less than 400 iterations.

The algorithms were coded in C and compiled with t
GNU-gcc compiler version 2.7.2~Free Software Foundation
Cambridge, MA! using the2O2 optimization flag. The pro-
grams were executed on a DEC Alpha Station 500~Digital
Equipment Corporation, Maynard, MA!. The total solution
times for each method were measured using the sys
called ‘‘gettimeofday’’ from within the program. It took an
average of 481.9 s for the CFM method and 5.2 s for
POCS. Although the examples shown in this study were
the algorithms should remain valid when extended to 3D
there is no conceptual difference between 2D and 3D ap
cations except for the computational complexity. The do
computation matrixA was sparse because only the prima
beam contributions were considered. Inclusion of the sc
tered radiation will fill the matrixA with nonzero elements
For 3D computation, the size of theA matrix will increase

xis
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TABLE II. Dose-volume constraints and solutions obtained by CFM and POCS methods.

Trial

Critical organ dose~Gy! Tumor dose~Gy!

Bladder Rectum Min Max Mean s V95%a

1. Constraints 100%<49 100%<47
CFM 100%<47 100%<47
POCS 100%<49 100%<47
Constraints 60%<25 65%<22
CFM 60%<25 65%<22
POCS 60%<25 65%<22
Objective minimize deviation from 73 Gy
CFM 70.8 73.7 73.0 0.5 100%
POCS 71.2 75.9 73.3 1.3 100%

2. Constraints 100%<49 100%<47
CFM 100%<48 100%<47
POCS 100%<49 100%<47
Constraints 60%<25 75%<22
CFM 62%<25 75%<22
POCS 61%<25 75%<22
Objective minimize deviation from 73 Gy
CFM 71.5 74.5 73.0 0.6 100%
POCS 71.5 75.9 73.4 1.3 100%

3. Constraints 100%<49 100%<47
CFM 100%<46 100%<40
POCS 100%<48 100%<46
Constraints 60%<25 85%<22
CFM 63%<25 85%<22
POCS 61%<25 85%<22
Objective minimize deviation from 73 Gy
CFM 68.6 76.7 72.9 1.6 97%
POCS 69.1 76.9 73.7 1.9 100%

aVolume treated to 95% of the prescribed dose.
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significantly. In order to evaluate the effect of increas
computational demand on POCS method when a more
phisticated dose model is employed, theA matrix was fully
populated with nonzero numbers; also, the treatment ge
etry was extended to 3D by replicating the 2D slice 19 tim
at 6-mm spacing. Each beam now consisted of 2D arra
19319 rays yielding the total of 3249 beam weights to
optimized. The number of 3D dose points was 6574 and
correspondingA matrix consisted of 21 358 926 elemen
The POCS method requires pseudo-inversion of theA matrix
@Eq. ~15!#. But this needs to be performed only once and
results are saved for repeated usage. The matrix inverse
eration took 0.5 s and the subsequent projection opera
8.4 s per iteration. As shown in Fig. 5, the pseudo-inve
computation time scales linearly with the size of theA ma-
trix which is proportional to the number of floating poin
calculations. As for the effect of including the lateral scatt
a recent study by Mohanet al. reports that ‘‘taking lateral
transport into consideration would lead to dose distributio
that are significantly closer to the desired do
distributions.’’31 Lateral transport can provide additional flu
ence that can be deposited to increase the target dose u
mity. It can also provide protection for normal tissues
allowing the reduction of margins and by generating stee
dose gradients in the overlap regions.
l. 25, No. 4, April 1998
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IV. DISCUSSION

In general, the nature of an optimization problem is det
mined by how the constraints are formulated. In this stu
we have constructed the dose–volume constraints using
substantially different methods. In the cost function meth
the constraints were designed to penalize solutions tha
creased the fractional volume permitted to exceed a d
limit while maintaining the entire organ to below a max
mum bound. The penalty function is a product of the do
penalty and the volume penalty terms. The dose pen
function, which is a sum of a quadratic and a linear functio
is an increasing function with respect to dose. Also, the v
ume penalty term as a function of the volume parameterg8
is increasing forg8.g, or when the volume penalty is ac
tive. Therefore, the product given by Eq.~1! is an increasing
function with no apparent local minima. However, it can
argued that it is possible for different segments of the org
volume to meet the dose–volume constraints, leading to m
tiple minima in dose–volume penalty score. For instan
assuming that no part of an organ is permitted to exceed
Gy and that one-third of the volume must remain below
Gy, multiple minima will occur if different parts of the orga
can comprise the required fractional volume while mainta
ing the whole organ dose to below 50 Gy. These multi
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solutions all satisfy the organ dose requirements, but i
likely that they differ in terms of the total cost if other con
straints and objectives are present. For instance, out of
possible solutions that satisfy the organ dose–volume c
straints~local minima!, only one may give the best tumo
coverage~global minimum!. The presence of multiple loca
minima in dose–volume optimization has been noted
others.32,33

In POCS, there is no concept of local minima. Rather,
nature of optimization problem is determined by wheth
convex formulation of the constraints exists. If a convex f
mulation is found, then a solution can be obtained determ
istically. Our strategy involved redefining the nonconv
dose–volume problem in terms of a limit on integral do
This permitted the use of the convex paradigm. The do
volume manipulation was accomplished by reducing the

FIG. 2. Dose volume histograms for the bladder obtained with~a! the cost
function minimization method and with~b! the method of projections onto
convex sets. The partial volume limits for rectum were varied for each
while for bladder the dose–volume constraints were kept constant. The
tire volume was required to remain less than or equal to 49 Gy. In addi
60% volume was restricted to doses less than or equal to 25 Gy, i.e.,
40% volume was allowed to exceed 25 Gy as indicated by the vertical
Medical Physics, Vol. 25, No. 4, April 1998
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tegral dose parameterI while at the same time limiting the
maximum organ dose. In radiotherapy it is generally not p
sible for all the convex sets to intersect at a single point si
the target objectives and organ constraints are by nature
tually exclusive. If convex sets do not have a common int
section, the projection operation will eventually reach a lim
cycle at which point no further improvement in convergen
can be made. This condition represents no improvemen
the mean-square distance between projections and is de
able by the termination condition associated with Eq.~23!.

This study focused on the partial volume constraints
normal tissues. Ideally, the dose–volume constraint sho
also be imposed on the target such that in addition to
minimum (Emin) and maximum dose (Emax) limits, a fraction
of the target volume permitted to receive doses below p
scription doseTD can be specified whereEmin,TD,Emax.
In the CFM method, an additional penalty function can

l
n-

n,
ly

e.

FIG. 3. Dose–volume histograms for the rectum obtained with~a! the cost
function minimization method and with~b! the method of projections onto
convex sets. The dose–volume constraints were varied for each tria
follows: ~Trial 1! 100%<47 Gy and 65%<22 Gy; ~Trial 2! 100%
<47 Gy and 75%<22 Gy; ~Trial 3! 100%<47 Gy and 85%<22 Gy. The
vertical line indicates the 22-Gy partial dose–volume limitE2 .
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formulated that penalizes doses belowEmin and those above
Emax with a cost amplifying factor similar to Eq.~3!. In the
POCS method the bounded dose vectors will form a con
set:

CT5H dWUEmin<(
k51

Q

dW k<EmaxJ . ~24!

Imposition of volume objective can be implemented ag
using the concept of integral dose limit. The correspond
convex set is

CTI5H dWUI T~ i !< (
target

(
k51

Q

dW k<I T maxJ , ~25!

whereI T max5(number of target voxels)3Emax. The target
integral dose parameterI T is varied at each iteration until th
target dose–volume prescription is met.

It is often accepted that the inverse techniques26–29 ~in-
cluding POCS! are not suitable for lung tumors32 in which,
unlike the prostate cancer, the division of the normal tiss
into high and low dose regions is not clearly defined. Ho
ever, a recent follow-up study reports that the reason
previous failure of the inverse method as applied to lun
was precisely that the dose–volume factor had b

FIG. 4. Dose–volume histograms for the target obtained with~a! the cost
function minimization method and with~b! the method of projections onto
convex sets. The target dose prescription was 73 Gy.
Medical Physics, Vol. 25, No. 4, April 1998
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neglected.9 The study also compared the dose–volum
dependent dosimetric optimization with the biological op
mization. The results suggest that even without the use
biological parameters, clinically relevant optimization is po
sible if the dose-volume factor is considered in the dosim
ric model. These findings indicate that the applicability
the inverse methods can, in fact, be extended to more gen
use if a dose–volume control such as the one described
is incorporated.

V. CONCLUSIONS

Two optimization techniques for intensity beam modu
tion with dose–volume constraints were presented. T
methods offer the ability to incorporate the volume effect
the normal tissue tolerance. In the cost function minimizat
method, the constraints were designed to penalize solut
that increased the fractional volume permitted to excee
certain tolerance while maintaining the entire organ to bel
a maximum dose. The volume-sensitive penalty function
scribed here can easily be adopted by existing optimiza
programs such as simulated annealing. In the convex pro
tion method, the nonconvex problem of the dose–volu
constraint was reformulated in terms of the integral do
limit, which permitted the use of convex constructs. The co
vex projection method can find solutions in much shor
time with minimal user interaction.
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