Optimization of intensity modulated beams with volume constraints
using two methods: Cost function minimization and projections
onto convex sets
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For accurate prediction of normal tissue tolerance, it is important that the volumetric information of
dose distribution be considered. However, in dosimetric optimization of intensity modulated beams,
the dose—volume factor is usually neglected. In this paper we describe two methods of volume-
dependent optimization for intensity modulated beams such as those generated by computer-
controlled multileaf collimators. The first method uses a volume sensitive penalty function in which
fast simulated annealing is used for cost function minimizati@RM). The second technique is
based on the theory of projections onto convex §86GCS in which the dose-volume constraint is
replaced by a limit on integral dose. The ability of the methods to respect the dose—volume
relationship was demonstrated by using a prostate example involving partial volume constraints to
the bladder and the rectum. The volume sensitive penalty function used in the CFM method can be
easily adopted by existing optimization programs. The convex projection method can find solutions
in much shorter time with minimal user interaction. 98 American Association of Physicists in
Medicine.[S0094-240808)01004-9
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[. INTRODUCTION within 5 year$, were reported. Reliability of partial volume
data is expected to improve as more clinical results become
Optimization of intensity modulated beams can be designedyailable.
to Satisfy either dosimetric prescriptions or biO'OgiCﬁ' re-  While much work has been done in the area of Optimiza_
sponse specifications. While biological models can more ditjon of intensity modulatiof, physical dosimetric optimiza-
rectly measure clinical outcome, they still remain in the for-tion subject to volume restrictions has received little atten-
mative stage$.0n the other hand, prescription in dosimetric tion in the past. Langeet al. proposed a method using a
unit has been well established as the clinical norm. Commixed integer linear programming which was applied to
monly, dosimetric strategies seek to deliver a high, uniformcompute beam weights of wedged and open fiéftislow-
dose to the target while maintaining the organ dose to belowver, the size of beam optimization problems which may be
tolerance. However, organ tolerance is more accurately asrandled by this method and the applicability to general in-
sessed by the volumetric information of dose distributiohs. tensity modulation problem are unknown. More recently,
Importance of the volume effect has been recognized anBortfeld et al. suggested a method of dose—volume con-
quantified as early as 1948 by Paterson, who measured thgraint using a penalty function which is active only when the
effect of volume on normal skin response to radiafidn.  organ dose is within a certain intervaCarol et al. reported
1991, volume-dependent normal tissue tolerance data fahe concept of an area cost function in which the cumulative
various organs were tabulated and published by a task foragose volume histogram is subdivided into regions with dif-
under NCI contract. The results of investigation for nearly ferent weights. The total cost is a weighted sum of the costs
30 different critical tissues were categorized into three volincurred in each regiotf.
ume classes: 1/3, 2/3, and whole. For each partial volume, In this paper we describe two methods of dosimetric op-
two dose levels, TD55/8he probability of 5% complication timization of intensity modulation with volume restrictions.
within 5 yearg TD50/5 (the probability of 50% complication The first method focuses on a formulation of a volume-
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sensitive penalty function in which fast simulated annealingThe volume-dependent term has the value of unity when

is used for cost function minimizatioflCFM). The second, y'<1y. Thus there is no additional penalty on organ irradia-
the method of projections onto convex sROCS, does not  tion when the volume constraint is met. However, the base
use an objective function. Instead, the constraints are e)penalty given by Eq(2) is amplified as the fraction of vol-
pressed in convex sets. Convergence to a solution is accomme elevated to dose above the lifajt begins to exceed the
plished by alternately projecting between these convex setspecified volumey. The penalty functionP is further
We apply these algorithms to the problem of intensity modu-weighted by the multiplieh, which gives the ability to fine
lated beam optimization under dose—volume constraints. tune the constraint. The total cost function is formulated in

the usual wayt by summing the target objective and the

Il. METHODS penalty functions:
A simplistic strategy for imposing the dose—volume re- Ny
strictions would be to partition the organ according to the _ i _ 2 ﬂ
| . . F=1-2 (Di=TD)*+ 2, @
dose—volume requirements and assign appropriate upper Nt =1 =1 N;

bounds to each segment. For instance, if the volume distri-

bution requires that no part of an organ rece_ive a dose high%hereTD is the prescribed dose to the target dndis the
than 50 Gy and that no more than 30% receive a dose greatgfee at a target sample pointP; throughP,, are the dose—

than 40 Gﬁ' then tge organ can be divi((jjed into 30/70%_Se|%olume constraints foM normal tissue regions given by Eq.
ments with upper bounds set to 40 and 50 Gy, respective y('1). Each term is normalized to its respective volume which

In this way, the .problem Is reduced to the_ case of muItipIeIs proportional to the number of uniformly distributed
organs with different upper dose limits. After pre- sample pointsNy,Ny,...Ny .

partitioning (.)f the organ, any of the existing inv_er_se r_netho_ds Minimization of the cost function was performed by the
gan be alpplled to achieve _lgﬁnforrr!al F&'F]:‘ff‘ 0|pt|m|_z;\t|ﬁ_n Withg;m lated annealing methd@!® The stochastic technique
ose—volume constraints. The major difficulty with this ap-p ¢ 1he ability to escape the local minima solutions and

proach is that arbitrary partitioning may not guarantee thTherefore is suitable when the exact behavior of the cost

best results. For instance, the region closer to the target vo Unction is unknown. Vectors representing changes in beam

ume _W"! most likely rece‘?’e a higher d.ose and,. therefc’re'strength were generated with Cauchy probability derféity.
partitioning should be carried out to assign th(_e higher of t,h?The n dimensional Cauchy distribution was sampled in
two upper bounds to these areas. However, it may be dlﬁc'épherical coordinates according to the scheme suggested by

cult to approximate the optimal dose distribution within the Mageras and Mohal?. The width parameter of distribution
organa priori, especially for complex beam-anatomy con- W(I) at Ith iteration was reduced according /(1)

figurations. Therefore, for this method to be effective, It:Wo/(1+|/RW), whereR,, is a parameter controlling the

would be necessary to perform optimization over all feasiblerate of collapse. Probability of accepting an uphill change in

organ volume partitions. This would be a cumbersome tas'%ost expt-AF/T), was reduced by changiri§ after every
More practical methods are described in the following. nth iteration according td(1)=T,/(1+/R,) whereR, is a

A. Volume-sensitive cost function minimization control parameter.

. . . . For the purpose of systematic tuning of the annealing pa-
.Con5|der an organ at risk which requires that no part re'rameters, it is useful to first determine the feasible range of
ceive a dose greater tha; and that no more thary

. heW,. A le initial val i hoosi
% 100% of volume receive a dose exceedig N repre- theW,. A reasonable initial value was obtained by choosing

sents the total number of uniformly sampled points over theWO S0 that the peak of the joint Cauchy distribution corre-

. . . A sponded to a beam strength step size in which the dose at the
volume. During the iterative optimization process, a doge . . .
. : isocenter changed by a fraction of the maximum dose. We
is calculated for each sample point. From these doses the
. L Use the formula,
fraction of the organ receiving a dose greater than de-
noted byvy’, is determined. Then a volume-sensitive con-

straint in discrete form may be written as W :E /Z_n ©
N " TPD Vn-1’
P=AVY, ¥, (1)
k=t whereTPD is the total dose contributed from all the pencil
where beams at the isocenter and 0.5 means that the desired initial
(Dy—E,)?+E,, D>E,, step size is 50% of the target prescription. With g se-

(2) lected, the initial temperature was determined after several

\Pk:{
D, DBy, trial runs while keeping the control parameté&tg and R;

and fixed. Initially, R,, andR; were assigned relatively large val-
2 ues and large iteration numbers were used to ensure conver-
<_) .Y >y gence. Afterward, the parameters were adjusted to speed up
V= . (3 the annealing process. The actual annealing parameters used
1, y'sy in this study are tabulated in Table I.
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TasLE |. Annealing parameters and values. nth beam element in thkth beam array,,, to the pointm.
—— Trial 2 Tl 3 Equgt|on(6) is simplified by defining the dose computation
matrix A, and dose vectod, as
W, 0.02 0.02 0.02
To 0.2 0.2 0.2 di=A.dy . (7)
Ry 1000 1000 1000
R 2000 2000 2000 Then the total dose vector fro@ beams is given by
N bladder 35 6.0 20.0

N rectum 3.0 9.0 25.0 t(l)

=2 d=> Aby. ®)

Now, the dose vector domain in which the constraints are
formulated is formed by concatenating the individual dose
vectorsd, for Q beams,

The theory of convex projections developed by
Bregmari® and Gubiret all” has been applied to such topics di(1) -+ do(1)
as sampling theorlf signal recovery? artificial neural d=1 : —[dTdl---dl]" )
networks?’ image processing’ and image restoratioff.For e Tl
biomedical applications, POCS has been applied to the prob- dy(M) -+ do(M)
lem of incomplete projection data in computerized A number of useful constraints can be constructed in this
tomography®® Recently, the mathematical foundation of domain. To compute the incident photon fluence modulation
POCS in radiotherapy applications has been preséfifeok  under dose-volume requirements, the following constraint
the specific case of intersecting linear varietidg/per- sets are used.
planeg, POCS is equivalent to Kaczmarz's alternating pro-
jection theorenf®

A set of vectors is said to be convex if a linear combina-
tion of any two vectors also lies within the set. More pre-

cisely, the definition states that a seis convex if for every First, we consider the organ dose constraint without vol-
x;€C and everyx;e C, ax;+(1l-a)x;eC for all 0O<a  yme restrictions and assume that the organ dose is simply
=1. In other words, the line segment connecta@ndx; iS  required to lie below a certain maximum. It is easy to show
totally enclosed inC. A useful property of POCS is that that in this case the set of doses that lie between 0 and the
successive projections between two or more convex sets Witlh‘pper bound is convex. Proof is made by applying the con-
nonempty intersection will yield a solution that satisfies allyexity condition stated above. According to the definition of
the sets involved. The convex projection method differs fromgonyex set, any linear combination Gfositive doses less
other iterative optimization methods such as steepeshanE is also less thafE. For instance, ifE=40 Gy, D,
descent? quasi-Newtor?, iterative filtered backprojectioff,  —39 Gy, andD,=38 Gy, thenaD,+(1—a)D,<40 Gy

and conjugate gradiefitin that it does not form a total cost for all Oygag 1. This is tr,ue for any otheD;<E andD,
function to be minimized. Instead, convergence to a solutionc g Therefore, the organ dose minimization using a single
is accomplished through the process of orthogonal projecgpper bound is a convex problem.

tions whose directions are determined by minimizing the Eu- * Now. the dose—volume constraints require that the organ
clidean distance between the convex constraint sets. The prga subject to multiple dose boundaries. In addition to the
jection operation is analogous to taking the gradient in thg,pper fimit E,, a portion of the volume must not receive
cost function based iterative methods. doses greater than a secondary upper IEitwhere 0<E,

The framework of POCS theory applied in radiation <g, As shown above, the doses that are bound between 0
therapy planning has been described previoffslwhich  andE, do form a convex set. However, in order for a certain
we summarize here. We begin by defining the dose vectofaction of these doses to remain bel@y so as to satisfy
domain in which the convex formulation is made. Assumethe yolume demand, the following must hold trueD,
that there areQ beams, each beam discretizedNobeam +(1—a)D,<E,<E;. This condition is guaranteed only
elements. Let the weights of the beam elements fromynenE,=E,, in which case, the constraint is reduced to the
the kth beam be written as a column vectohy  simple case of a single upper limit with no partial volume
=[byq byz =+ byn]". For M sample points, the dose deliv- requirement. Therefore, the dose—volume constraints cannot

B. Projections onto convex sets

1. Normal tissue dose —volume constraint set

ered to each point by thieh beam array is given by be expressed in a single convex set.
1 1 We circumvent the problem by using two separate convex
di(1) A 7 AN [ by sets. The first set constrains the maximum dose to the whole
: =| & T o, (6) organ while the second limits the integral dose. The first
d (M) ale aI'lAN ben pushes the dose—volume histograms toward the origin along

the dose axis and the other along the volume axis. When
whereay), is the dose contribution per unit weight from the applied to the same volume, these two constraints provide
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the ability to manipulate the dose—volume relationship. Thesquare and, therefore, not invertible. The problem is circum-
constraint which determines the maximum whole organ dosg@ented by using the pseudo-inverse meffidd find by,
is convex and is given by

o b= (AfAY) ~*Agdy. (15
C01:[&0<2 dk(m)$E1], me S, (100  Then the beam-dose transformation is established through
k=1 the projection operator,

whereS denotes a set of indices corresponding to the sample

points located within the organ. The set dictates that each Pa(di) = Au(ARAL) " Agdy. (16)
dose sample point remains beldty . The constraint which o )
limits the integral organ dose is also convex: 4. Non-negativity constraint set
Q Negative beam fluence is not physically possible. The
Cor= [ dlo<> > d.=<Ii )] ’ (12) non-negativity constraint set requires beam weight to be non-
organk=1 negative. The corresponding convex set is defined as

W.he.re the outer summation integrateg all the dose.vgptor@+:{5|ak:Ak5k’ each element ob, =0}, 1<k<Q.
within the organ volume. Note that the integral dose limiting

parametet is varied with iteratiori. Suppose the fractional The proiection ontc.. is (17)
volume, which is required to remain below the dose limit bro) +

E,, i,s not corr?pliant, and ingtead, its upper limit .is found to b (d)= AIL(A{(TA{()—lA((Tak, bin<O0, 8
bg E; whereE;>E,. Thenl is reduceq in pr_oportlon to the +(Hk de, otherwise,

difference betweert), and E,. Otherwise,l is unchanged. o, ) ]

E; is updated at each iteration. Projection operations ont§/here the matrxA, is formed for negative beam weights.

Co1 and Cy, force the dose vector to conform to these setsFor instance, if theith element of thecth beam arrayoy, is
Details are given in Sec. Il B 5. negative, the matriyd, is formed by removing thath col-

umn of Ay. Thus the projection effectively sets negative
beam weights to zero.

2. Target dose prescription set 5. Iterative projections

This constraint set requires that the dose in the target vol- By iteratively projecting among these five convex sets,
ume be the same as the prescription. The set of dose vectdi® beam weights that satisfy the dose—volume constraints
within the target volume whose sum forms the prescribedind target objectives are determined. For a given dose vector

doseTD is convex: d, which does not belong to a constraint €gtthe projection
Q onto C is given by the unique vectqﬁec such that the
Cr=1d ;_:1 deTD]- (12 distance between and p is minimum. For instance, the

projection for the integral organ dose limit is formed by
Projection onto the target dose constraint set has the effect @bmputing the distanca,

minimizing the deviation from the prescription. The projec- 0 0
tion operator for thé&kth component is J= 5 k21 ||5k_ak||2+}\ kzl r"Tﬁk_ |)
Q = =
- -1 -
Pr(di) =dy+ Q TD- >, dk)- (13 18 Q
=t =5 2 [Ab—di?+N| > FTAkbk_I): (19
2 k=1 k=1
3. Beam-dose relationship set and minimizing it.
The set of dose distributions that can be generated from
different combinations of beam intensities is convex and is TzAI(Akbk—dk)+AAIr=O, (20
given by by
CB:{a|ak:Ak6k} 1<k=<Q. (14) wherer is a structure discriminator whose elements are unity

] ) if inside the organ and zero if outside. After solving and
Any dose vector estimates must be a member of this set. ThEQUbstituting for, Eq. (20) is solved foer. The projection

IS accomplished by projecting Or.'tO.CB.' As arule, projec- _vectorﬁ is found by transformin@k back to the dose space:
tion must occur between sets existing in the same domain, in

this case, the dose vector domain. This necessitates that the Tl dos Ex—u . -

beam vectorﬁk be expressed in terms of dose vector quan- k| "k v

tity. However, the beam vector cannot be obtained througha - _ Po(di) = o u. 21)
simple inversion ofA, . The difficulty arises from the fact ~ Pk~ ' 02\% Tl de+—r], u<o,

that, generally, the dimension of the dose vector exceeds that v

of the beam elements. In other words, the matrix is not Tkak, otherwise,
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at the 0.6-cm intervals. The matched dose-ray sampling reso-
lution permits the use of the same dose points for both the
optimization and the computation of dose—volume histo-

grams. The dose contributions to the dose points from the
adjacent rays were precomputed by a simplified dose com-

@ putation model using the tissue-phantom ratios from an
18-MV machine. Effects of the scatter and beam penumbra
e were not considered. The model is adequate, however, for
the purpose of demonstrating the algorithms.
0 7/ ) N
cm
A ll. RESULTS

Fic. 1. External and organ contours for bladd®y, rectum(R), and prostate Table || summarizes the dose—volume constraints and so-
(T) used to demonstrate the algorithms. The arrows indicate the central axjs

of the beams directed at the isocertte. utions obtained by the two algorithms. Both algorithms were
able to control the dose-volume relationships and satisfy all
of the constraints in the process of intensity modulated beam
where optimization. In both methods, the cumulative dose—volume
Tr \1AT histograms for the bladder remained essentially unchanged
Tk=AAAD A throughout the trials in agreement with the prescriptibig.

Q 2). The rectum curves changed as the partial volume not
u=>, r'Tdy, (22)  permitted to exceed 22 Gy was increagéiy. 3. Histo-
grams for the rectum reflect the difference in the two algo-
rithms. POCS appears to reduce the overall organ dose more

= I'T,r. than CFM. This is understood by recalling that POCS con-
k=1 trols the dose—volume relationship primarily by reducing the
Likewise, the projection for the other constraints are formedintegral organ dose until the constraints are met, while the
The POCS iteration proceeds as follows: cost function used in this study tries to suppress the dose
N N exceedingE,, which corresponds to the fractional volume
d' " 1=P, (Pg(P1(Poa(Poi(d))))), (23)  prescription. This also explains why in Trial 3, where the

wherei is the iteration counter. The iterative process is ter-factional volume requirement was most stringent, the upper

minated when improvement in the mean-square distance pdmit for the rectum was overconstrained in the case of the
tween projections becomes sufficiently small. cost function method, causing the decrease in the V95%

value (Fig. 4).
In CFM the constraint parameterg, E;, andE,, were
set to the prescribed values and it was only necessary to vary
the Lagrange multipliex to attain the constraint goals. How-
The proposed algorithms were applied to intensity moduever, several trial runs were required to determine the Yest
lated beam optimization of a prostate plane. Dose—volumealues for each trial. Solutions were obtained in about 50 000
restrictions were imposed on the bladder and the rectuniterations. In POCS, the adjustment of the allowable integral
Upper dose limits were set to 49 Gy and 46 Gy, respectivelydose parameter was performed automatically, thus elimi-
In addition, 60% of the bladder was required to receive anating the need for multiple runs. Convergence was achieved
dose less than 25 Gy while the fractional rectum volumen less than 400 iterations.
receiving a dose less than 22 Gy was varied in three different The algorithms were coded in C and compiled with the
trials to attain 65%Trial 1), 75% (Trial 2), and 85%(Trial GNU-gcc compiler version 2.7 Free Software Foundation,
3) volume. Target prescriptiomD in Egs.(4) and(13) was  Cambridge, MA using the— O2 optimization flag. The pro-
set to 73 Gy. The organ dose constraints for the Trial 1 wergrams were executed on a DEC Alpha Station SD®ital
chosen so that further reduction in the upper dose limit€Equipment Corporation, Maynard, MAThe total solution
would cause the target volume treated to 95% of the pretimes for each method were measured using the system
scription (V95%) to be less than 100%. Therefore, the algo-called “gettimeofday” from within the program. It took an
rithms were required to operate in the regions where it wasverage of 481.9 s for the CFM method and 5.2 s for the
sufficiently challenging to maintain a good tumor coverage POCS. Although the examples shown in this study were 2D,
The solution goals were to satisfy the dose—volume conthe algorithms should remain valid when extended to 3D, as
straints for the organs while minimizing the deviation from there is no conceptual difference between 2D and 3D appli-
the target prescription. The target and organ contours excations except for the computational complexity. The dose
tracted from a CT slicdFig. 1) were discretized into 0.6 computation matrixA was sparse because only the primary
X 0.6 cnt pixels, yielding 105 target points, 201 bladder beam contributions were considered. Inclusion of the scat-
points, and 40 rectum points. Each of the nine equiangulatered radiation will fill the matrixA with nonzero elements.
beams encompassing the target was quantized to 19 rays alBor 3D computation, the size of th& matrix will increase

C. Application to optimization of beam intensity
modulation
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TasLE Il. Dose-volume constraints and solutions obtained by CFM and POCS methods.

Critical organ dos€Gy) Tumor dose(Gy)
Trial Bladder Rectum Min Max Mean o V95%*

1. Constraints 100% 49 100%=<47

CFM 100%<47 100%<47

POCS 100949 100%<47

Constraints 60%:25 65%<22

CFM 60%<25 65%<22

POCS 60%<25 65%<22

Objective minimize deviation from 73 Gy

CFM 70.8 73.7 73.0 0.5 100%

POCS 71.2 75.9 73.3 1.3 100%
2. Constraints 100% 49 100%<47

CFM 100%<48 100%<47

POCS 100%<49 100%<47

Constraints 60%: 25 75%<22

CFM 62%<25 75%<22

POCS 61%<25 75%<22

Objective minimize deviation from 73 Gy

CFM 715 74.5 73.0 0.6 100%

POCS 715 75.9 73.4 1.3 100%
3. Constraints 100% 49 100%<47

CFM 100%<46 100%<40

POCS 100%<48 100%<46

Constraints 60%: 25 85%<22

CFM 63%<25 85%<22

POCS 61%=<25 85%<22

Objective minimize deviation from 73 Gy

CFM 68.6 76.7 72.9 1.6 97%

POCS 69.1 76.9 73.7 1.9 100%

a/olume treated to 95% of the prescribed dose.

significantly. In order to evaluate the effect of increasedlV. DISCUSSION

computational demand on POCS method when a more so-

phisticated dose model is employed, #hematrix was fully In general, the nature of an optimization problem is deter-
populated with nonzero numbers; also, the treatment geoninined by how the constraints are formulated. In this study,
etry was extended to 3D by replicating the 2D slice 19 timegve have constructed the dose—volume constraints using two
at 6-mm spacing. Each beam now consisted of 2D array osubstantially different methods. In the cost function method
19x 19 rays vyielding the total of 3249 beam weights to bethe constraints were designed to penalize solutions that in-
optimized. The number of 3D dose points was 6574 and théreased the fractional volume permitted to exceed a dose
correspondingA matrix consisted of 21 358 926 elements. limit while maintaining the entire organ to below a maxi-
The POCS method requires pseudo-inversion oftleatrix =~ mum bound. The penalty function is a product of the dose
[Eq. (15)]. But this needs to be performed only once and thepenalty and the volume penalty terms. The dose penalty
results are saved for repeated usage. The matrix inverse ofsnction, which is a sum of a quadratic and a linear function,
eration took 0.5 s and the subsequent projection operatiols an increasing function with respect to dose. Also, the vol-
8.4 s per iteration. As shown in Fig. 5, the pseudo-inversg@ime penalty term as a function of the volume parameter
computation time scales linearly with the size of thana-  is increasing fory’ >+, or when the volume penalty is ac-
trix which is proportional to the number of floating point tive. Therefore, the product given by Ed) is an increasing
calculations. As for the effect of including the lateral scatter,function with no apparent local minima. However, it can be
a recent study by Mohaat al. reports that “taking lateral argued that it is possible for different segments of the organ
transport into consideration would lead to dose distributionsyolume to meet the dose—volume constraints, leading to mul-
that are significantly closer to the desired dosetiple minima in dose—volume penalty score. For instance,
distributions.’®! Lateral transport can provide additional flu- assuming that no part of an organ is permitted to exceed 50
ence that can be deposited to increase the target dose unif@sy and that one-third of the volume must remain below 40
mity. It can also provide protection for normal tissues by Gy, multiple minima will occur if different parts of the organ
allowing the reduction of margins and by generating steepetan comprise the required fractional volume while maintain-
dose gradients in the overlap regions. ing the whole organ dose to below 50 Gy. These multiple

Medical Physics, Vol. 25, No. 4, April 1998



441 Cho et al.: Optimization of intensity modulated beams 441
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Fic. 2. Dose volume histograms for the bladder obtained aitthe cost ~ Fic. 3. Dose-volume histograms for the rectum obtained wéifthe cost
function minimization method and witfb) the method of projections onto function minimization method and witth) the method of projections onto
convex sets. The partial volume limits for rectum were varied for each trialconvex sets. The dose-volume constraints were varied for each trial as
while for bladder the dose—volume constraints were kept constant. The erollows: (Trial 1) 100%<47 Gy and 65%<22 Gy, (Trial 2) 100%

tire volume was required to remain less than or equal to 49 Gy. In addition=47 Gy and 75%-22 Gy; (Trial 3) 100%<47 Gy and 85%<22 Gy. The

60% volume was restricted to doses less than or equal to 25 Gy, i.e., onlyertical line indicates the 22-Gy partial dose—volume lifjt.
40% volume was allowed to exceed 25 Gy as indicated by the vertical line.

tegral dose parametérwhile at the same time limiting the

solutions all satisfy the organ dose requirements, but it isnaximum organ dose. In radiotherapy it is generally not pos-
likely that they differ in terms of the total cost if other con- sible for all the convex sets to intersect at a single point since
straints and objectives are present. For instance, out of fethe target objectives and organ constraints are by nature mu-
possible solutions that satisfy the organ dose—volume cortually exclusive. If convex sets do not have a common inter-
straints (local minima, only one may give the best tumor section, the projection operation will eventually reach a limit
coverage(global minimun). The presence of multiple local cycle at which point no further improvement in convergence
minima in dose—volume optimization has been noted bycan be made. This condition represents no improvement in
others®2:33 the mean-square distance between projections and is detect-

In POCS, there is no concept of local minima. Rather, theable by the termination condition associated with E2B).
nature of optimization problem is determined by whether This study focused on the partial volume constraints to
convex formulation of the constraints exists. If a convex for-normal tissues. Ideally, the dose—volume constraint should
mulation is found, then a solution can be obtained determinalso be imposed on the target such that in addition to the
istically. Our strategy involved redefining the nonconvexminimum (E,,;,) and maximum doseH,5, limits, a fraction
dose—volume problem in terms of a limit on integral dose.of the target volume permitted to receive doses below pre-
This permitted the use of the convex paradigm. The dose-scription doseTD can be specified whel,,;,<TD<Eax-
volume manipulation was accomplished by reducing the indn the CFM method, an additional penalty function can be
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z: neglected. The study also compared the dose—volume-
o 701 de_pepdent dosimetric optimization with the. biological opti-
£ mization. The results suggest that even without the use of
% 607 biological parameters, clinically relevant optimization is pos-
> 507 sible if the dose-volume factor is considered in the dosimet-
S 407 Tral 1 ric model. These findings indicate that the applicability of

o [R— Trial 2 the inverse methods can, in fact, be extended to more general

207 eee-e- Trial 3 use if a dose—volume control such as the one described here

101 is incorporated.
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Dose (Gy) V. CONCLUSIONS

Two optimization techniques for intensity beam modula-

Fic. 4. Dose—volume histograms for the target obtained waihthe cost tion with dose—volume constraints were presented. The

function minimization method and wittb) the method of projections onto L . )

convex sets. The target dose prescription was 73 Gy. methods oﬁgr the ability to incorporate the \(olum_e .eff.ect_of
the normal tissue tolerance. In the cost function minimization

method, the constraints were designed to penalize solutions

formulated that penalizes doses belBw.. and those above that increased the fractional volume permitted to exceed a
P Wi certain tolerance while maintaining the entire organ to below

Eray With @ cost amplifying factor similar to Ed3). In the a maximum dose. The volume-sensitive penalty function de-

POCS method the bounded dose vectors will form a ConVe)écribed here can easily be adopted by existing optimization

set programs such as simulated annealing. In the convex projec-
. . tion method, the nonconvex problem of the dose—volume
Cr=4d Emin$k21 d<Emax( - (24 constraint was reformulated in terms of the integral dose

limit, which permitted the use of convex constructs. The con-
Imposition of volume objective can be implemented againvex projection method can find solutions in much shorter
using the concept of integral dose limit. The correspondingime with minimal user interaction.

convex set is

Q
()< > de=

wherel 1 .x=(humber of target voxel$J E,,,. The target
integral dose parametéy is varied at each iteration until the  @gjectronic-mail: cho@radonc.washington.edu
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