Fourier Analysis and Filtering of a
Single Hidden Layer Perceptron *

Robert J. Marks I, Payman Arabshahi
Department of Electrical Engineering, University of Washington FT-10
Seattle, WA 98195 USA

Abstract— We show that the Fourier transform of the linear output of a single
hidden layer perceptron consists of a multitude of line masses passing through the
origin. Each line corresponds to one of the hidden neurons and its slope is determined
by that neuron’s weight vector. We also show that convolving the output of the net-
work with a function can be achieved simply by modifying the shape of the sigmoidal
nonlinearities in the hidden layer.

1 Preliminaries

Consider a layered perceptron with a single hidden layer of H hidden neurons.
The output, 8(Z), of the perceptron is linear and the input is a vector & of
dimension N. An example for the case N = 2, H = 3 is shown in Fig. 1(a). We
have, for the general case:

H
0(z) = Eaha(“ﬁf*‘ on), (1)
:1
where u_fg = [wp1wpy ... wpy], L = [r1 2 ... zN], T denotes transposition,

and generally o(-) is the sigmoid function,

o(2) (2)

In the analysis to follow, however, o(z) can be any function (e.g. Gaussian).

Carroll & Dickinson (1989) showed that such networks can implement an
arbitrarily good approximation to any L5 function over [—1,1]®. The functional
form of the output of such a network was shown to be a finitely parameterized,
approximate form of the back-projection operator, a component of the inverse
Radon transform (Deans, 1983).

Tto (1993) extended this result to cases where the domain of approximation is
either a compact subset of the Euclidean space, or its entirety. Approximations
of m-times continuously differentiable functions in several variables, and their
derivatives were considered.

Our charter here is to examine the Fourier transform of the output of such
a network. We assume that the neural network is trained and that all weights
are fixed.

B 1
T l4eF

2 Theory

Define the N dimensional Fourier transform (see for example (Marks, 1991)) of

6(%) as:

*(invited paper) International Conference on Artificial Neural Networks (IEEE/ENNS),
Sorrento, Italy, May 1994.

@ B(X1, Xo) (b) 1

O(uyq, up)

\©

W12

W22
W31

Wo1 T~ W u>l

Figure 1: (a) Example for N = 2 inputs and H = 3 hidden neurons. The bold
connections from the input to hidden layer are components of the interconnect
vector ws. (b) Plot of ©(%) for the network in (a). There are 3 lines corre-
sponding to a delta function “slice” for each hidden neuron. The lines’ slopes
are determined by each hidden neuron’s weight vector.

where

VA S

d¥ = dzidzy---dry, and @ = [ujus ... uy]. The notation 0(F) «— O(#) is
sometimes used to denote Fourier transform pairs. Thus:

H
@)=Y ay / (WL T + ¢p)e 27T E gy (4)
h=1 z

We arrive at the following expression for O(#) (see the Appendix):

H
—’ — UN]27r¢huN/whN6 UN g
(4) = - wWh_), 5
Z::lwth N) (WhHN h) ()
where X(+) is the Fourier transform of o(z) !, g = [wp1 wha - .. wh(N_l)],
&L = [r1xo ... xn_1], @ = [ugus ... un_1] and 8(Z) = 6(x1)6(xa)...8(xN)

where 6(¢) is the impulse or Dirac delta function. ©(%) is seen to be the sum of H
scaled delta functions in N space. Each hidden neuron corresponds to a different
line mass in N space. This parallels the observations of Carroll & Dickinson
(1989). The back-projection of an object’s projection, when transformed, results
in the line masses shown in Fig. (1).

To illustrate, consider the case of a 2 dimensional input vector with 3 hidden
neurons as shown in Fig. 1. There are three line masses corresponding to the
3 hidden neurons. Each line’s slope is determined by the corresponding hidden
neuron weight vector (see Eq. (32)).

1For the nonlinearity in Eq. (2), (u) = %S(u) — jmcosech(272u).

If the output of the neural network is now convolved with a function (&), the
only effect will be a change in the weighting of its line masses. Their orientation,
and hence all {@Wy}, will not change. We now examine this case in more detail.

3 Convolution

Consider the case where the output of the neural network is convolved with a

function y(&). The methodology we present here can be used as an alternative

to training neural networks with jitter to improve generalization (Reed, 1992).
We will show that if 2

6(Z) =) ano(d} @), (6)

h=1
and
p(T) = 0(Z) x (), (7)
then
H
o(@) = 3 ano, (& 7) (8)
h=1
where
oy (y) — Xy (u) (&) < I'(p)
are Fourier transform pairs, and
X, (u) = S(u)L(@hu). (9)

Convolving the output of the neural network with a function (%) is therefore
equivalent to convolving the sigmoidal nonlinearities with the same function.

Proof:
#H = [0 Y (£)dE
o) /g_(E1(E)dé (10)
= an | o(@L & — FLEY(E)dE
> /5_< &y (E)dé (11)
= > anoy (@} D). (12)
where:
oy(y)= | o —u_)'g_‘ Y dE.
) /g_@ Ey(E)dé (13)
Thus:

!
)
—~

<
S—

[l

[/ o(y — Wy E)y(§)dE | =iV dy (14)

S(w) [@eimet i (15)
= X(u)[(Bhu). (16)

2Inclusion of the bias term ¢, in Eq. (6) simply produces a multiplicative phase term
exp(—j2m¢pu) on the right hand side of Eq. (9). It is omitted to simplify notation.

3.1 Examples

HILBERT TRANSFORM

The Hilbert transform in one dimension (Bracewell, 1986) is obtained by
convolving a function with the kernel y(z) = —(wz)~!. Extending this to N

dimensions, we have:
N

25 = [[= (17)

T
n:ll n

Taking an N dimensional Fourier transform, we obtain

r(5) = [T jsen(en), (18)

where sgn(-), the signum function, is equal to 1 for positive arguments and —1
for negative arguments. Thus, from Eq. (9), we have:

N

X, (u) = S(uw)[j sgn(w)¥ [T sgn(wnn), (19)

n=1

where wp,, is the nth component of wj. For N = 1 this reduces to:

Yy(u) = sgn(wp)jsgn(u)X(u)
= sgn(wp1) H{o(y)} (20)

where H{c(y)} represents the Hilbert transform of o(y).

Furthermore if wp1 > 0 Vh, the above relationship reduces to X, (u) =
H{o(y)}. Thus taking the Hilbert transform of the output of the neural network
corresponds to replacing each nonlinearity in the hidden layer neurons with its
Hilbert transform.

DIFFERENTIATION

Differentiation, commonly used in neural networks for sensitivity analysis
(Minai & Williams, 1993; Oh et. al., 1991, Priddy et. al., 1993), can be viewed
as a convolution with a unit doublet. In one dimension, taking the derivative
of a function is equivalent to multiplying the function’s Fourier transform with
(j2mp), where p is the frequency variable. Extending this to M dimensions, we
have the M dimensional derivative kernel

L(p) = [T (G27pm), (21)

where we are performing a derivative with respect to the first M input variables
(M < N). Extension to higher order derivatives is straighforward.
Thus from Eq. (9), we have:

£, () = (7200 (T wnm)E(w), (22)

and

10 = (TT o) 552 (23)

In one dimension this reduces to:

Do) s

. i 24
o 2 (24)

a’; (y) = Whpp

where we have replaced o (y) with U,’;(y) to identify the sigmoid function cor-
responding to the hth hidden neuron. The index P (1 < P < N, where N is
the input dimension) refers to the input variable zp with respect to which the
first order derivative is being taken. It is seen that taking the derivative of the
output of the neural network is equivalent to the following two operations: (a)
Replacement of the sigmoidal functions in the hidden layers by their derivatives,
and (b) Replacement of the set of weights {ap} by {arwpp} for h=1,2,.. . H.

References

Bracewell, R. (1986) The Fourier transform and its applications. McGraw-Hill:
New York.

Carroll, S.M., and Dickinson B.W. (1989) “Construction of neural nets using
the Radon transform,” Proc. International Joint Conference on Neural

Networks, Washington DC, USA, vol. 1, pp. 608-611.

Deans, S.R. (1983) The Radon transform and some of its applications. John
Wiley & Sons: New York.

Ito, Y. (1993) “Radon transform and differentiable approximation by neural
networks,” Proc. International Joint Conference on Neural Networks,
Nagoya, Japan, vol. 3, pp. 2288-2291.

Marks, R.J. IT (1991) Introduction to Shannon sampling and interpolation
theory. Springer-Verlag: New York.

Minai A. A. and Williams R. (1993) “On the derivatives of the sigmoid,” Neural
Networks, vol. 6, no. 6, pp. 845-853.

Oh, S, Marks, R. J. I, and El-Sharkawi, M. A. (1991) “Query based learning in
a multilayer perceptron in the presence of data jitter,” Proc. First
International Forum on Applications of Neural Networks to Power Systems,

Seattle, WA USA (IEEE), pp. 72-75.
Priddy K. L., Rogers S. K., Ruck D. W.; Tarr G. L., and Kabrisky M. (1993)

“Bayesian selection of important features for feedforward neural networks,”
Neurocomputing, vol. 5, no. 2-3, pp. 91-103.

Reed, R, Marks, R.J. II, and Oh, S. (1992) “An equivalence between sigmoidal
gain scaling and training with noisy (jittered) input data,” Proc. RNNS /
IEEE Symposium on Neuroinformatics and Neurocomputing, Rostov-on-Don,
Russia, pp. 120-127.

Appendix

We have from Eq. (4):

/ o(TLE+ ¢p)e 2 T dz

T

= / / O'(Ib’g_f_ + wpyTyN + ¢h)6—j27r(zifa?_+uNxN)dedi;_ (25)
T_ TN

u3

Wh3

Wh1

Wh2
u

Figure 2: Plot of Eq. (32) for N =3

Letting z = tb'g_f_ + wpy N + ¢ we obtain:

co 2T
/a(w{f+ dp)e~i 2T E g

:/ /U(z)e—jZW(ﬁif_+(z—w§_f_—¢h)uN/whN) dz_,

WhHN
1 .
S
WhHN T_ z

Xe—jQ“‘T(ﬁZ—U‘);{_UN/whN).’E_ df_€j2ﬂ'¢huN/whN

Defining:
z(u):/ o(z)e=I2m §(7_) = 8(u1)8(us) ... S(un—1),
-0
We have:

/ o (WL E + ¢p)e~ 270 24z

x

:| 1 ej27r¢hUN/whNE(u_N)/ e—jzw(az_wz—“N/whN)f_df_
WhN WhN~ Jz_
1 .
— e]27r¢huN/whNE(unN)(S('J— _ u‘)‘h_uN/u;hN).
|wpn WhN

Equation (29) is nonzero only when

—

U_ = Wh_un/wpn,
or, an element at a time:

Up = WhnUN/WhN; I<n<N-1
The above equation can be written as:

Ui Uz UN -1 unN

Wh1 Wh2 Wh(N-1) WhN

(27)

(28)

(29)

(30)

(31)

(32)

In N-space, this defines a line. For example, if N = 3, we have the situation in

Fig. 2. Note that the line goes through the origin and the point & = p,.
Substituting Eq. (29) into Eq. (4) results in Eq. (5).

