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Abstract 

A new kchniqae for adaptation of fuzzy membership functions in a fuzzy inference system is 
proposed. T h e  technique relics upon the  isolation of the specific membership iunction t ha t  con- 
tribu red to t h e  final decision, followed by the  updating of this function's parameters using steepest  
dexen t .  The e m r  measure ubed is thus back propagated from output  to input, through the min 
and mur opera tom used during the  inference stage. This  is feasible because the operations of min 
and max arc continuous differentiable functions and therefore can be placed in a chain of partial 
derivatives for stcepest  descent backpropagation adaptation. More interestingly, the  partials of min 
and max (or any other  order statistic, for that  matter) act  as 'pointers' with the  result that  only 
the function t ha t  gave rise t o  the min or max is adapted; the others are not. T o  illustrate, let 
a = m a x p l ,  A, -. . , @#I. Then acr/aa, = 1 when 8, is the  maximum and is otherwise zero. We 
apply this property to t h e  fine tuning of membership functions of fuzzy min-max decision processes 
rad i l lustrate with ra estimation example. 

1 Introduction 
Fuzzy membership functions chosen for a control or decision process may require adaptation for purposes 
of fine tuning or adjustment to stationarity changes in the input data. Use of neural networks to perform 
this adaptation has been proposed by Lee et al. [I]. Other techniques proposed can be found in (31, (41, [5]. 
Our method more closely parallels that proposed by Nomura, Hayashi and lIra\'akami [2]. In their work, 
membership functions were parameterized and steepest descent was performed with respect to each 
parameter using an error criterion, in order to obtain the set of parameters minimizing the error. To 
straightforwardly differentiate the error function with respect to each parameter, they used products 
for the fuzzy intersection operation. The  output error backpropagated this way, was used to adjust the 
fuzzy membership functions. 

In this paper, we show that  the more conventionally used minimum operation for fuzzy intersection 
and maximum operation for fuzzy union can be similarly backpropagated. Unlike the method of Nomura 
at al. which updates all fuzzy membership function parameters in each stage, the method proposed herein 
results only in the adjustment of the fuzzy membership funct'ions that gave rise to the control action 
or decision output. Backpropagation of fuzzy min-max rules allows for fine tuning and adaptation of 
membership functions using performance data. 

2 Differentiation of MIN and MAX Operations 

Differentiation of the rnin or  may operations results in a 'pointer' that specifies the source of the minimum 
or maximum. To  illustrate, let 



where 4(-),  a unit step function, is 1 for positive arguments and is zero otherwise. Note that the max 
operator in Eq. 1 is continuous and can be diiferentiated ,is 

1 ; if p, is maximum 
0 ; otherwise 

Similarly, let 

The  min function is 31~0 continuous and 

1 ; if yn is minimum 
0 ; otherwise 

Indeed, a n y  order statistic operation ( e . g  [lie ~hi rd  largest number or, for N odd, the median) can 
likewise be diiferentiated. In  each case, the partial derivative points to the number or index that gives 
the order statistic result. 

3 Fuzzy Min-Max Estimation 

To illustrate adjustment of fuzzy membership functions by steepest descent , consider the fuzzy estimation 
problem illustrated in Fig. 1. 'rye wish to generate an estimate f ( x l , z 2 )  of a target function t (z l ,r2)  
using a set of fuzzy IF ... THEN rules. Here we have: 

T h e  rule table (Table 1) is generated by partioning the domain of t ( r l l  z2) ,  {(zl ,  z?) 1 rt E 
[ - I ,  11, zz . E [- 1,111 into 64 (8 x 8) regions and assigning a fuzzy membership function to each re- 
gion in accordance to the values of f ( ~ ! ,  +?) in that region. For instance. if t ( q ,  z2) takes on values 
close to 1 in certain regions, then the membership function used for those regions of the domain will be 
"Positive High" (PB).  Initial membership functions for / are thus formed in this way. The values of rl 

and 2 2  are fuzzified in a similar manner. The initial membership functions chosen are Gaussian and are 
shown in Figure 2 for zl lz2 and f (zl , z l ) .  

To illustrate, consider the  fuzzy IF ... THEN rules with a positive medium (PSf) consequent. Thae 
are highlighted in Table 1. Reading from left to right from the top of the  table, they are: 



IF r ,  is YE AND r? u 3H 

OR 

IF zt is PZ AND r2 is PH 
(b) 

THEN 

f ( ~ l ' ~ 2 )  is PM- 

Figure 1: A h z z y  estimation problem: a) 3-D 
pioc and b) contour plot, of the signal to be es- 
timated: t ( z t ,  r l )  = sin(xzl) cas(.;rzl) over the do- 
main { ( z I ,  2 2 )  I 21 € [-I, l ] ,z2 € [-I, ll}. 

Similar rules exist for the other five categories of f .  

Table 1: Decision Table for fltzzy atimation. 
Table contents represent the estimated fuzzy 
value ol  the output f for a given choice ol 
valua for z, k 21. Rula with a consequent of 
Positive medium (Pbl) u e  highlighted. 

3.1 Feedforward Procedure 
For purposes of  analysis, let the membership functions for the variable +I be denoted by PI, i = 
1 , 2 , - - - N ,  those for the variable 21 by 4, j = 1 ,2 , -  - -  M, and those for the output variable I by 

k = 1 ,2 , . . .  K.  
For a given output membership function &, the rules, as shown in Table 1, are of the form: 

f z b d z k OR 1f t i  is pi and 2 2  is p; OR - - *  

Then ... f b P:. 



Sb = { I ,  m I Ir{ w d  p;) are antecedents of a rule with conxquent p! ]  (6) 

liar operations &a arrive at  the output are as follows. 

1. Perform a g & r w k  fuzzy iinterxc~ion (e.9. minimum or outer product) on each of the membership 
v d u a  of E I  and z2 in a d  )r; far every-rule with consequent p j ,  forming activation valuer(: 

2, Gllec t  xt iv&ion v d u e  far &ke output membership functions and perform a fuzzy union je.g. 
milramurn). 

3, l"he value zlae defuzzified to generate the output estimated vdue, f (zl, z2), by finding the 
seatrsid a$ the compmik membership function y: 

where 

A i  and c i  are, respectively, the ares and centroid of the consequent membership func~ion 

Backpropagation Adjustment 

Expert beuristia are typically u x d  to specify the membership functions I"or the input (zl  , z2) and  output 
(6). These functions csn be adapted or fine tuned using supervised learning. The steps to adapt the 
input membe~ship functions are m follows. 

Mre first form the error function by taking the squared difference between the estimated output f ,  
and the de i r ed  target value 2 :  

kssume now that we wish to update parameters of" a Gaussian rnemberslllp function that  appean 
either in the antecedent or the consequent of a rule. Denote these parameters by and the corrr 
sponding membership function by pi .  In our example, for I = 1 ,2 ,  the index i = 1,2, - * .  8 and for 1 = 3, 
the index i -" 1 , 2 , .  - -6 ;  q r=r f ,2, and: 

pi(z) = exp 



me stwg-t daccnl updatc rule 'K 

This in turn can be mitten in the folloring r a y  (set Eqs. I a d  8): 

From Eqs. 2 a d  4, end referring to Ev. 7 md 8 we o b t ~ n :  

where 6 ( - ] ,  the Kronecker delta function, b equal to one for zero wemnkr r  a d  is zero o t h e r w k ,  
Substituting the above two equations in Eq, 17, we obtain: 

It is clear that the t\vo Krsnecker delta hnctions now serve to hiate the membership function w h e  
parameter is being updated. Other mernhrship functions that are not u ~ d  in the decision process rue 
not adapted. Eq. 20 findly simpiifies to: 

In general p; is a function of many parameters p = 1 ,2 ,  - - -. Far our estimation problem, using 
Gaussian membership functions, there are two parameters to adapt. These are the mean (m;[l]), a d  
the variance (mf[2]). Jjye thus have: 



4 Results 
wb be= mufb  of the ~ p p l i c a i o n  sf thk technique b the -timarion problem d i s c u a d  in 

seetion 3, Fig. 3 ~ U U S ~ P ~ U ~  the input aznd output membership functions d ter  ztdaptation and Fig, 4 
shows rhe (mu& improved) esrimation w u i t -  
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Figure 2: In i t id  membenhip functions for a) 11, t? md b) / ( r l , r 2 ) .  Here NB zz Negative Bigh, NM 
s Negative Medium, FIS E Sega~ive Small, HZ E Negative Zero, PZ r Pmitive Zero, .- - 



Figure 4: Find rnernbttrship functions for a) b) q and c) l(r1,+2). Bere Sf3 E Negative Bigh, 
NM zi Negative Medium, NS z Pegative Small, NS r Yegative Zero, PZ E Pasirive Zero, 9 . .  

Figure 4: Rcsult of fuzzy estimation: a) 3-D plot and b) contour plot, of the =timated signd: /(rl, r2)  = 
dn(5zl) C O S ( * Z ~ )  over the domain { ( x i ,  r2) I I, E [-I, 11, s3 E [- 1,111 


	s 1.pdf
	9.tif
	s.pdf
	1.tif
	2.tif
	3.tif
	4.tif
	5.tif
	6.tif
	7.tif
	8.tif




