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1. Introduction 

With the introduction of new network topologies and 
improved training algorithms, the neural networks have 
demonstrated its feasibility and practicality in several power 
systems applications. An &cia1 neural network is modeled 
as a massively parallel interconnected networks of elementary 
processors or neurons. This highly connected array of 
elementary proctssors defines the system hardware. Various 
software algorithms are then crafted to synthesize a mapping 
between input and output variables by learning a set of arc 
weights and neuron thresholds based on training examples 11 - 
41. From the computational point of view, neural networks 
comes with the advantages of massive parallelism and are not 
restricted in speed by the Von Neumann bottleneck 
characteristics of mnvcntional computation. 

Layered perceptron is a specific neural network 
architecture where sets of neurons are ananged in layers. 
Currently, the l a y e d  perceptron is receiving the most attention 
as a viable candidate for several applications. DifTerent from 
expert system that is taught by rules, the layered perceptron is 
taught by examples. The layered pcrceptron is operated in two 
modes: training and testing. In the training mode, a set of 
training data is used to adjust the weights of the network 
interconnects. Once these weights have been determined, the 
n e d  network is said to be trained. In the testing mode, the 
trained neural network is activated by test data. The response of 
the layered percqtron will be the representative of the data by 
which it was trained. 

In power system appiications, &cia1 neural networks 
have been recently proposed as an alternative for solving certain 
traditional problems where conventional techniques have not 
achieved the desired speed, accuracy or efficiency. Generally 
spealang, neural networks applications that have been proposed 
in the literature up to date can be broadly categorized into three 
main areas: Regression, Classification and Combinatonal 
Optimization. The application involving regression includes 
Load Forecasting (7-101, Transient Stability (16,24,25], 
Synchronous Machine&lodelling [26], Contingency Screening 
[27-281, Harmonic Evaluation [29] and Control [21,30-321. 
Applications involving classification include Static Secunty 
Assessment (1 1013,371, Dynamic Security Assessment 1381, 
Harmonic Load Identification (331 and Alarm Processing (34- 
361. In the area of combinatorial optimization, Capac~tor 
Control [20] and Topolog~cal Observability 139-401 are 
included. In the following sections, a representative 

applications from each categoy will be overviewed. A more in 
depth treatment of the material can be found in the r e v e  
references. The selected applications are load forecasting, static 
security assessment and capacitor control. 

2. Layercd Perceptron 

In the NN, the neurons are arranged in layered structures. An 
input layer and output layer surrounds a hidden layers. The 
activations signals are' transmitted from one layer to the next 
layer through a set of links that either attenuate or a m p l e  the 
signals based on the respective weights [I-51. On account of 
simplicity and effectiveness of structures, the layered perceptron 
is the most attractive in modem applications. 

3. Load Forecasting 

Load forecasting is a very useful tool for economic allocation of 
generation, energy transactions, system security analysis, 
optimal energy interchange between utilities, unit commitment 
and generator maintenance scheduling. Since there are several 
applications related to load forecasting, the accuracy of load 
forecasting model plays an important role in power system 
engineering. Considerable efforts are being invested by utilities 
for the development of accurate load forecasting techniques. 

Basicaily, the conventional techniques used for load forecasting 
can be classified as time series approach and regression 
approach. In time series approach, one treats the load demands 
as a time series signal. However, numerical instability usually 
deteriorate the forecasting performance [6]. As to the 
conventional regression approach, the linear or piecewise- 
linear representations are usually adopted as a forecasting 
functions. The accuracy of this approach is dependent on the 
functional relationship between weather variables and electric 
load that must be known apriori. Moreover, it cannot handle 
the non-stationary temporal relationship between the weather 
variables and load demand. 

The attractive features of the neural network approach is that 
NN can combine both time series and regression approaches to 
predict the load demand. Because NN can technically 
synthesize a mapping between input and output variables, the 
accurate hnctional relationship between weather variables and 
electric load is not required. In other words, the nonlinear 
mapping benveen the input and output is implicitly imbedded in 
the neural network. 



The neural nenvork approach proposed in (61 uses previous load 
data combined with actual and forecasted weather variables as 
inputs, where the load demand is the output. As an esample. to 
predict the load demand at the kLh hour on a 21 hour period. the 
training data for NN are selected as follows: 

Input data: 
k: Hour of the forecast (k) 

Forecast temperature at hour k 
2$4,k), L(24. k): Actual temperature and load 24 
hours earlier 
T(m, k), urn k): Actual temperature and load m hours 

earlier 

Output data: 
Lo: Load at hour k. 

During training, the actual temperature T(k) is used instead of 
Tp(k). Different NNs are trained to predict the load demands at 
varylng lead times. The results are reponed to be better than 
those obtained through some of the eusting extensive 
regression techniques. 

A sample of the test results from [6] is shown in Table 1 and 2. 
There were five sets of actual load and temperature data used in 
the study. Table 1 shows several sets of training data. Each set 
contains data corresponding to 8 consecutive days. The data did 
not include wveekends or holidays. 

Table 1. Test data sets. 

- . Table 2 showvs the NN forecasting error in percent. The results 
are averaged over a 24 hour period for each dav. The average 
error for the 5 test sets was found to be approximately 1.40%. 

. i 

Sets 1 Test &qta from 

Table 2. Error (%) of hourly load forecasting with 
one hour lead time 

Set #I 
Set #2 
Set #3 

4. Static Security Assessment 

0 1/23/89 - 0 1/30/89 
1 1/09/88 - 1 1/ 17/88 
1 111 8/88 - 1 1/29/88 

Static security assessment is defined as the ability of a power 
system to reach a steady state operating condition after 
disturbance that does not violate any gven system operating 
constraints. The operating constraints may consist of bus 
voltage magnitude limits and the thermal limits of each line. 

I 

Set #4 1 12/08/88 - 1211 5/88 
Set # 5  1 12/27/88 - 0 1/04/89 

Static security assessment consists of three distinct stages: Thcy 
are contingency d&ni tion (CD); contingency selection (CS) and 
contingency evaluation (CE). CD defines a probable 
contingency list CS is the process to shorten the original long 
list of contingency by removing the vast majority of casts that 
have no violations. CE using a fast ac power flow is then 
performed on successive individual cases in d-g order of 
severity. The resulting system attributes arc checked for post 
contingency violations. 

Security assessment is a classification problem where the 
combinations of certain topoiogies, states and contingencies 
give rise to insecurities. Concepts of neural network can be 
used to capture some common underlying characteristics 
between the pre-contingency system states and the post- 
contingency security status. The attractiveness of applying 
neural network to determine powver system security is its speed. 
Once a reliable classifier is in place, classmng a new operating 
state of the power system into secure or instcure class is trivial 
compared to the cumbersome caiculations involving analytical 
solutions. 

For a large scale power system, a single NN may be an 
enormous computation esercise to handle [ll]. One way of 
reducing the dimensional complesity is to use a modular 
approach where the security problem is divided into smaller 
sub-tasks. A modular NN can then be used to process each sub- 
task. A possible modular approach for a large-scaled power 
system problem is shown in Figure 1. This is necessary due to 
the variations in which a contingency exhibits itself based on 
the nature, location and clearing strategy. Furthennore, for a 
given contingency, the mechanisms leading to line and voltage 
violations are findamentally different. Line violations are 
caused by real power overflo\vs, while voltage violations are 
caused by an escess or a deficiency of reactive power. 
Therefore, it can be seen that separate NNs arc trained for 
assessing line and voltage violations under the same 
contingency. 

(*: predicted temperature, Tp is not avaiiable) 



contingmcy viobtion cont'n%-c)l sm-tJ' 
evaluation classification 

Table 3. The range of load parameters. 

voltage 
contingency 1 ( he 
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Figure 1. A modular neural network approach to static security 
assessment 

'Ihe is depined in Figurr 2. It In this tM the of tie line #I6 is i n V d g a u  A tingle 
generators, 8 loads and 16 transmission lines. The influence of pre*ontingency contains j4 dBeftnt 
the external networks is modelled by a bidirectional power flow 

including all the real and racuve generation (P, Q, real and 
at buses #' and #lo r e ~ t i v e l ~ '  shows the Wve loads (P, Q), all the bus magnitudes (V) and all 
operaung point and the allowed perturbation in the real and the line currents (I) in the system. A feature extmctjon 
reactive loads at each bus. The tit line flow is considered to be algorithm is used to reduce the inputs to six key features used in either positive or negative depending on the directlon of the training. The training and testing statistics of the neural 
current flow. networks arc given ,in Table 4. 

__----- -------__ __---------_ --__ 
(:: - ;xternal _ system _I31 '-~6;"ed2f_"~'_t_tC~' ---___ Table4 Training and testing statistics for theneural nnwork. ------------ - - 

5. Capacitor Control 

With the desire to improve power factor and voltage profile, 
compensating the reactive power flow in utilities is an area of 
continuous development. The reactive power compensation 
can be viewed as an optimization problem where several 
optimum sizes of capacitors can be placed at optimum locations 
to minimize line losses. Since this is a complex nonlinear 
optimization problem, there are many techniques such as 
gradient method. linear programming, nonlinear programming, 
integer programming and expert system method were 
investigated. 

Figure 2. The tested power system. 

The application of neural network in capacitor control is 
demonstrated in [20]. The objective is to use 3 measurement 
quantities (P, Q, IVI) at specified locations and the current tap 



setting of the line capacitors to calculate the optimum tap 
settings of the capacitors. It can be seen that the capacitor 
control is a typical combinatorid optimization problem in 
neural network applications. 

In [20], the problem is solved in two stages. Both stages use 
multi-layer percepvons trained by back error propagation. In 
stage 1, 6 NNs are trained to perform a power flow calculation 
at 6 specified locations. The output load cunrnts (i 1 - if;) from 
stage I are then taken as inputs for the stage 11. In stage 11, NNs 
arc trained to select the optimum tap setting of 5 capacitors. 

I w 
Stage I 1 I 1  

I I I I I 
I l l  I I I I  

7' =OAD FLOW I 
'I 'I 'I 

Figure 4. The capacitor control through NNs 
(From (201 courtesy of IEEE, (C) TEEE, 1989) 

Stage I1 

With the hierarchical neural network approach, the 
combinatorial optimization of capacitor control problem is 
solved effectively. 

I ' 2 
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