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Abstract- The inversion of snow parameters from passive 
microwave remote sensing measurements is performed with a 
neural network trained with a dense media multiple scattering 
model. The basic idea is to use the input-output pairs generated 
by the scattering model to train the neural network Once the 
neural network is trained, it can invert snow parameters speedily 
from the measurements. In this paper, we have performed si- 
multaneous inversion of three parameters: mean-grain size of ice 
particles in snow, snow density, and snow temperature from five 
brightness temperatures. The five brightness temperatures are 
that of 19 GHz vertical polarization, 19 GHz horizontal polariza- 
tion, 22 GHz vertical polarization, 37 GHz vertical polarization, 
and 37 GHz horizontal polarization. It is shown that the neural 
network gives good results for the inversion of parameters from 
the simulated data computed from the dense media radiative 
transfer equation which includes the effects of multiple scattering. 
For the simulated testing data, the absolute percentage errors for 
mean-grain size of ice particles and snow density are less than 
lo%, and the absolute error for snow temperature less than is 3 
O K .  We also use the neural network with the trained weighting 
coefficients of the three-parameter model to invert the SSMI data 
over the Antarctica region. The algorithm inverts 30 000 sets of 
5-channel brightness temperatures of Antarctica in only 10 CPU 
min on a V ! .  3500 workstation. Validity of the inversion results 
is discussed in view of the limited number of parameters that 
we used and the much more complicated real-life situation in the 
Antarctica. 

I. INTRODUCTION 
arious techniques for solving inverse problems in remote V sensing have been proposed in the last few decades 

[1]-[4]. The well-known technique in inversion is the 
Backus-Gilbert inversion technique [2]-[4]. In this technique, 
the approximation of single scattering is used so that the 
scattering measurements are linearly related to the medium 
parameters. However, in microwave remote sensing problems, 
especially for dry snow, multiple scattering can be a dominant 
effect. The relation between remote sensing measurements and 
the medium parameters are highly nonlinear. In this paper, we 
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use an artificial neural network to invert snow parameters from 
passive microwave remote sensing measurements. The basic 
idea is to use the input-output pairs generated by the scattering 
model to train the neural network [5]. The scattering model 
we use includes multiple scattering ef€ects. Once the neural 
network is trained, it can invert snow parameters speedily 
from the measurements. 

An artificial neural network can be defined as a highly 
connected array of elementary processors called neurons. In 
this paper we consider the Layered Perceptron (LP) type 
artificial neural network [6]-[8]. The LP type neural network 
consists of one input layer, one or more hidden layers, and 
one output layer. Each layer employs several neurons and 
each neuron in the same layer is connected to the neurons 
in the adjacent layer with different weights. Signals pass from 
the input layer, through the hidden layers, to the output layer. 
Each neuron receives a signal which is a linearly weighted sum 
of all the outputs from the neurons of the former layer. The 
neurons then produce an output signal by passing the summed 
signal through the sigmoid function. 

The backpropagation learning algorithm is used for training 
the neural network. This algorithm uses the gradient descent 
algorithm to get the best estimates of the interconnected 
weights, and the weights are adjusted after every iteration. 
The iteration process stops when a minimum of the difference 
between the desired and the actual output is reached by the 
gradient descent algorithm [7], [SI. 

The scattering model that is used to train the neural network 
is the dense media radiative transfer theory while the medium 
is modeled by a random collection of discrete scattering 
with size distribution [9]-[ 161. The dense medium radiative 
transfer theory is different from the conventional or clas- 
sical radiative transfer theory. In a dense medium with an 
appreciable fractional volume of scatterers (e.g., ice grains in 
snow), the assumption of independent scatterers, that is used 
in conventional radiative transfer theory, is not valid. This has 
been verified by controlled laboratory experiments [ 171, [18] 
and by Monte Carlo simulation by direct solution of Maxwell 
equation with configuration including up to 4000 particles 
[19]. Recently, we have developed the dense medium radiative 
transfer theory which accounts for correlated scattering and 
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which are derived from field theory using the quasicrystalline 
approximation of the Dyson’s equation and the correlated 
ladder approximation of the Bethe-Salpeter equation [9]-[ 161. 
The dense media theory also includes multiple scattering 
effects and agrees with controlled laboratory experiments 
[17], [18] and Monte Carlo simulations of direct solution 
of Maxwell equation [19]. The relations between brightness 
temperatures and the snow parameters are nonlinear under the 
dense media multiple scattering model. 

We first use the dense media theory to compute the bright- 
ness temperatures for a half-space snow medium for the five 
channels using different combinations of input parameters of 
mean-grain size of ice particles in snow, snow density, and 
snow temperature. About 1000 sets of input4utput pairs are 
generated in this manner that are well distributed in mean- 
grain size of ice in snow, snow density, and snow temperature. 
On a VAX 3500 workstation, it takes about 2 h CPU time 
to calculate all 5-channel brightness temperatures for these 
1000 cases based on dense medium radiative transfer theory. 
These are used as training data for the neural network. Using 
the error backpropagation algorithm on these sets results in 
a set of weighting coefficients. The CPU time for training of 
10 000 iterations with these 1000 sets of training data by 
this backpropagation algorithm is about 24 h on a DEC 3100 
workstation. Thus the training time can be large. But once 
the training is complete, the actual inversion of parameters 
can be done speedily. We note that the multifrequency and 
two-polarization measurements are very important for the 
convergence of the weighting coefficients. Without either of 
them, there exist several inversions for the same observation. 
As a consequence, the weighting coefficients would not con- 
verge when these data were not used. The neural network 
then is tested by a set of simulated testing data which are, 
also generated by the passive dense medium theory and are 
randomly distributed in mean-grain size of ice particles in 
snow, snow density, and snow temperature. We show that 
the neural network yields good results for the simulated 
testing data with absolute percentage errors for mean-grain 
size of ice particles in snow and snow density less than lo%, 
absolute error for snow temperature less than 3 O K .  Our results 
demonstrate that neural network can perform speedy inversion 
of parameters from full multiple scattering model. Finally, 
we also use the neural network with the trained weighting 
coefficients to invert the SSMI data over the Antarctica region 
[12]. The algorithm inverts 30 000 sets of 5-channel brightness 
temperatures of Antarctica in only 10 CPU min on a VAX 3500 
workstation. The results are quite encouraging in view of the 
fact that representation of the entire Antarctica region by three 
physical parameters is an oversimplified picture. 

K’ cos $ - ( k2 - K” sin2 
K’ COS 0 + ( k 2  - K’2 sin2 6’)1/2 11. DENSE MEDIA RADIATIVE TRANSFER 

EQUATION FOR PASSIVE REMOTE SENSING 

Consider thermal emission from a half space medium with 
dielectric particles of permittivity t, embedded in a back- 
ground medium of permittivity E .  (Fig. 1, note for the case 
of snow, the background permittivity E is t o  of free space and 
the particle permittivity E ,  will be that of ice.) The particle 

sizes obey a size distribution n ( a )  which is the number of 
particles per unit volume with radii between a and a + da. 
The medium is of uniform temperature T .  Then the dense 
media radiative equation for passive remote sensing assume 
the following matrix form 1111 of dimension 2, for 0 5 0 5 T 

where 

and I,, Ih are the vertical and horizontal specific intensities, 
respectively. Also in (I), c = KbK’2/(X2k2), Kb is Boltz- 
man’s constant, X is free space wavelength, K’ is the real part 
of the effective wave number in region 1, IC is the free space 
wave number, and W is the albedo. In (1) 

where 

p 1 2 ( $ ,  e’) = cos2 e 

1 ) 2 1 ( 0 .  e’) = cos2 0’ 

p 2 2 ( 0 ;  e’) = 1. 

The boundary conditions for (1) are, for 0 5 0 5 

Iv(z = O,T - e )  = rv(S)Iv(z = 0, e )  

k2  cos B - K’(k2 - Kt2 sin2 
k2 cos 0 + K’(k2 - Kt2 sin2 8)1/2 ~ ~ ( 6 )  = 

In (9)-(11), K’ is the real part of the effective propagation 
constant K of the medium which consists of the background 
and the dielectric particles with size distributions and tce = 2 
Im(K) is the extinction rate of the specific intensity. 

After (1) is solved subject to the boundary conditions of 
(8)-(9), the brightness temperatures in the direction 00, where 

Authorized licensed use limited to: Baylor University. Downloaded on May 6, 2009 at 20:49 from IEEE Xplore.  Restrictions apply.



TSANG et al.: INVERSION OF SNOW PARAMETERS 1017 

and 

Ki(0 0 (goo 

Fig. 1. , Passive remote sensing with observation of brightness temperatures 
of a half space medium with dielectric particles of permittivity ts embedded 
in a background medium of permittivity 6. The particles obey Rayleigh size 
distribution. The temperature of low half space is T. The observation is in 
direction 80. 

Bo = sin-l(K'sin B / k )  is related to 8 by Snell's law, in region 
0 for vertical and horizontal polarizations are give by 

] (12) [ T B h ( 8 0 ) ]  c [ (1 - . h ( O ) ) l h ( Z  = 0,O) . 
TBv(O0) = (1 - ' & ~ ( B ) ) l v ( z  = 0,O) 

The differences between the dense medium theory and the 
conventional radiative transfer theory are the calculations of 
K ,  the extinction rate K,  and the albedo LJ in terms of the 
physical parameters of the medium which are represented by 
cs and size distribution .(U). 

The cross pair distribution functions of multiple particle 
sizes are calculated through the Percus-Yevick approximation 
[13]-[16] that expresses the correlations in terms of the size 
distribution .(U). 

The calculation procedure for K ,  K,, and ij from cs and 
.(U) is as follows. We first discretize .(U) into L sizes: 
u l ,  u2 . .  . UL, equally spaced at Au. Then each size u3 is 
represented by a fractional volume f ,  and the number density 
n, which are 

In (13)-(18), the subscript j refer to a particular species of 
particle size. H,, is the three-dimensional Fourier transform of 
the total correlation function h,l(r) between a pair of particles 
of size j and 1 separated by a distance r.  The total correlation 
function between two particles is : h,l(r) = g,L(r) - 1, where 
g31(r) is the pair distribution function. The pair distribution 
function g,1 ( r )  is proportional to the conditional probability 
that a particle of size j will be found at a distance T from 
a given particle of species 1 and vice-versa. Pair function of 
g,1 can be computed using the Percus-Yevick approximation 
[ 131-[ 161. 

The effective propagation constant is calculated by a simple 
iteration of (18). The initial guess for K is a real value KO 
determined by ignoring the imaginary term in (18) and solving 
the resulting nonlinear equation. The positive root is put into 
the right-hand side of (18) to iterate once to get K .  The 
extinction rate is ~ ; ~ = 2  Im(K). The albedo LJ is calculated 
as follows: 

Using the calculated results of K ,  ti,c and LJ from f, and 
n ( u ) ,  the dense media radiative transfer equation can be solved 
readily to calculate the brightness temperature. 

In the following numerical simulation and training of the 
neural network, we have used a Rayleigh size distribution 

where (U) is the mean radius and f is the fractional volume 
of all the particles. The fractional volume and the mean radius 

(14) 

are defined by 

(21) 
O0 47T 

(15) f, nj = G. 
3 a j  

Using QCA-CP, the effective propagation constant K can be 
calculated from fj ,  nj and uj  as follows: 

3K2 K 2  = k 2  + - f iYl  
D 1=1 

The advantage of the Rayleigh size distribution is that there 
are only two parameters f and (U). 

Thus the medium input physical parameters of the dense j=1 
(16) 

where medium radiative transfer equation using the Rayleigh size 
L distribution are: 

1=1 
D = 1 - Cflljl (17) 1. Complex permittivity of the particles cs 

2. Fractional volume occupied by all the particles f 

Authorized licensed use limited to: Baylor University. Downloaded on May 6, 2009 at 20:49 from IEEE Xplore.  Restrictions apply.



1018 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 30, NO. 5, SEPTEMBER 1992 

INPUT 

Input layer 

Hidden layer I 

0 0 0 0 

0 0 0 0 

0 0 0 0 

OUTPUl 

Fig. 2. Structure of a multilayered perceptron-type artificial neural network 

3. mean radius (U) 
4. physical temperature T 
From these parameters, the brightness temperatures of ver- 

tical and horizontal polarization at specified frequencies and 
observation angles can be calculated by the above procedure. 

111. THE LAYERED PERCEPTRON 

A. Architecture 

An artificial neural network (ANN) can be defined as 
a highly connected array of elementary processors called 
neurons. A widely used model called the layered perceptron 
(LP) ANN is shown in Fig. 2. The LP type ANN consists of 
one input layer, one or more hidden layers, and one output 
layer. Each layer employs several neurons and each neuron 
in a layer is connected to the neurons in the adjacent layer 
with different weights. Signals flow into the input layer, pass 
through the hidden layers, and arrive at the output layer. Each 
neuron receives signals from the neurons of the previous layer 
linearly weighted by the interconnect values between neurons. 
The neuron then produces its output signal by passing the 
summed signal through a sigmoid function [21]-[25]. 

A total of 9 s_ts of tr$ning data are assumed to be available. 
Inputs of { i l l  i p ,  . . . , Z Q }  are imposed on the corresponding 
target vectors, {G,  t;. . . . , t;} on the bottom layer. In the 
training of the neural network with dense medium multiple 
scattering theory, we have used Q between 180 and 1000. 
An example of a calculation of a set of training data is as 
follows. We fix the complex permittivity if the ice particle in 
snow such that Re(€,) = 3.260, Im(c3) = 0.001~0. The three 
parameters are: (U) = 0.03 cm, f = 0.3, T = 270 O K .  Using 
dense medium transfer theory, we calculate five brightness 
temperatures at observation angle 53", we get: T B ~  = 233"K, 

156"K, TBh = 142°K ar 37 GHz. These together give a set 
of training data: 

TBh = 216°K at 19 GHz; T B ~  = 219°K at 22 GHz; T B ~  = 

All Q sets of training data are normalized between 0 and 1. 
The dimension of i is 5 and the dimension of c i s  3. Note: In 
calculation of brightness temperatures using the parameters of 
cs,  f ,  (U) and T from dense medium theory, the parameters 
are the input and the brightness temperatures are the output: 
However, in using the set of results as training _data, the input i 
is the brightness temperatures, and the output t is the physical 
parameters. This is because we are using the neural network 
to do the inverse problem of finding the physical parameters 
from the brightness temperature. 

The training is halted when the average error between the 
desired and actual outputs of the neural network over the Q 
training data sets is less than a predetermined threshold. The 
training time required is dictated by various elements including 
the complexity of the problem, the number of the training data 
pairs, the structure of network, and the training parameters 
used. 

B. ANN Training 

Although there are other methods, the Generalized Delta 
Rule (GDR) is the technique most commonly used to train the 
layered perceptron. The following procedure is used. The first 
vector, <, is presented to the LP. The error is mean :quare 
error between the actual output and the desired output t l .  The 
error is used to adjust the neural network weights. A similar 
adjustment is performed for the training pair ( i 2 ,  t;), etc. After 
all Q data have been used, the process is repeated untiI the 
error is acceptably small. 

The output 0, , from neuron a ,  is connected to the input of 
neuron 3 ,  through the interconnection weight W,, . Except for 
the input layer, the state of the neuron j is : 

0, = f ( . p L P )  (23) 
z 

where f ( x )  = 1/(1+ e-z) and the sum is over all neurons in 
the adjacent layer. Let the target state of the output neuron be 
t k .  Thus, the error at the output neuron can be defined as 

1 
2 (24) Ek = - ( t k  - 0 k ) 2  

E = C E ~  (25) 
k 

where neuron k is the output neuron. 

to the gradient error, i.e., 
The gradient descent algorithm adapts the weights according 

Specifically, we define the error signal as 
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With some manipulation, we obtain the following GDR: 

nw,, = rls,o, (28) 

where 77 is an adaptation gain. 6, in computed based on 
whether or not neuron j is in the output layer. If neuron j 
in one of the output neurons, 

4 = (t, - 0,)0,(1- 0,) (29) 

If neuron j is not in the output layer, 

8, = 0,(1 - O,)CW,k (30) 
k 

In order to improve the convergence characteristic, a mo- 
mentum gain Q! is commonly addended to (28) [26]. 

AW,,(n + 1) = r&O, + Q! n W&L) (31) 

where n represents the iteration index. 
The training of the neural network is complete if the 

convergence of weighting coefficients has been achieved. The 
convergence criterion is that the mean square error at the 
output must be less than the desired error which is called 
tolerable error. Layered Perceptrons typically take a great deal 
of time to train. Once trained, however, for a given input, 
output can be generated quite rapidly. All that is required 
is a few multiplications, additions, and the sigmoid function 
calculation. 

Iv. TRAINING AND TESTING OF NEURAL NETWORK BASED 
ON SIMULATED DATA FROM DENSE MEDIA THEORY 

The procedure of training and testing of the neural network 
is summarized as follows. 

The frequencies are set at 19 GHz, 22 GHz, and 37 GHz, 
which are the SSMI operating frequencies for microwave 
radiometer. The permittivities of the particles E, are fixed at 
values that correspond to dry snow at microwave frequencies. 
The observation angle 60 is set at 53" which is the observation 
angle used by SSMI. 

The physical parameters of the snow medium are repre- 
sented by: 

1. Mean-grain size a, of the ice particles in snow with 
assumed Rayleigh size distribution. 

2. Snow density d. The fractional volume f occupied by 
the ice particles in snow is equal to the ratio of snow 
density to ice density. The ice density we use here is 
0.91 gkm3 

3. Temperature distribution of the lower half space. We 
assume the snow medium has a constant temperature 
Temp. 

In the range of interest, We use dense medium radiative 
transfer theory and different combinations of a,( k ) ,  d ( k ) ,  and 
Temp( k )  to calculate the brightness temperatures T1gv ( I C ) ,  

noting frequencies in unit of GHz; v, h denoting vertical and 
horizontal, respectively, and k denoting the index of the data 
set. On a VAX 3500 workstation, it takes about 2 h CPU time 
to calculate all the 5-channel brightness temperatures for 1000 

T19h(k)7 T22v(k), T37Jk) and T37h(k) with 19, 22, 37 de- 

combinations of a m ( k ) ,  d ( k )  and Temp(k). The input is l ( k )  
= [ computed brightness temperatures Tia(IC) 1, ia = 19v, 
19h, 22v, 37v, and 37h, and the output is qlc) = [ physical 
parameters of a,(k), d ( k ) ,  and Temp(k) 1. ; ( I C )  and ;(k) 
have to be normalized between 0 and 1 in order to be used by 
the neural network. Linear scaling is used here. To have better 
convergence in the training, the 1000 input-output pairs are 
randomly shuffled before supplying to the neural network to 
be trained. Sets of data are generated for the neural network 
in this manner. Part of them are used as training data, part of 
them are used as testing data. 

Training is done by using the error back propagation algo- 
rithm described in Section 111. The training is complete when 
error threshold is met. On a DEC 3100 workstation, it takes 
about 24 h CPU time to finish training of 10 000 iterations with 
1000 sets of training data. The resultant weighting coefficients 
are used to invert a,, d and Temp from known brightness 
temperature Ti, . 

In this paper, the neural network we use has the following 
properties: 1) Number of hidden layers is three; 2) number 
of neurons in each hidden layer is five; 3) tolerable error at 
output is 0.00001. 

A. Testing Results with Variation of Number of Iterations 

In this case, we assume E, = (3  + iO.00025)to at 19 GHz, 
E, = (3 + i0.00028)~o at 22 GHz, t, = (3 + i0.001)~o at 
37 GHz, 0.0lcm 5 um(k)  5 0.055cm, 0.1g/cm3 5 d ( k )  5 
0.7g/cm3, and 207°K 5 Temp(k) 5 270°K. We also have 

and a,(k), d ( k ) ,  and Temp(IC) as outputs to the neural 
network. 

The testing results are shown in Figs. 3 (a), (b), and (c). 
Fig. 3(a) shows the error for mean-grain size of ice particles 
in snow. Fig. 3(b) shows the error for snow density. Fig. 3(c) 
shows the error for snow temperature. Figs. 3 (a), (b), and (c) 
demonstrate that increasing the number of iterations results 
in better convergence to the true value and hence lowers the 
errors. After 10 000 iterations, the absolute percentage error 
for mean-grain size is less than 10%; the absolute percentage 
error for snow density is less than 10%; the absolute error for 
physical temperature is less than 3 O K .  

Tl9,(k), TlSh(k), T22v(k), T37v(k), and T37h(k) as inputs, 

B. Investigation of Multifrequency and Polarization Effects 

We assume t, = (3 + iO.00025)~o at 19 GHz, E, = 
(3  + i0.00028)~o at 22 GHz, E ,  = (3  + i0.001)~o at 37 GHz, 
O.0lcm 5 a,(k) 5 0.055cm, 0.1g/cm3 5 d ( k )  5 0.7g/cm3, 
and 207 "K 5 Temp(k) s 270 O K .  We have considered the 
following three cases: 

(1) Brightness temperatures T ~ g , ( k ) ,  T22,(k), and T ~ ~ ( l c )  
are inputs, a m ( k ) ,  d ( k ) ,  and Temp(k) are outputs to the neural 
network. In this case, the input has three vertical brightness 
temperatures, and has no horizontal brightness temperatures. 

(2) Brightness temperatures T1gv ( I C )  and Tlgh ( I C )  are inputs, 
am(k ) ,  d ( k ) ,  and Temp(,%) are the outputs to the neural 
network. In this case, the input has both vertical and horizontal 
brightness temperatures. However, there is only one operating 
frequency at 19 GHz. 
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weighting coefficients diverge. Snow density is related to the 
effective permittivity of the snow medium [lo], [15] in the 
dense medium radiative transfer theory which expresses the 
effective permittivity as a function of fractional volume of ice 
particles and ice permittivity. The effective permittivity affects 
strongly the difference between the vertical and horizontal 
polarized reflectivities. Since brightness temperature decreases 
with the increase of reflectivity, the snow density affects the 
difference between vertical and horizontal brightness temper- 
atures. Thus for the inverse problem, if two-polarization mea- 
surements are absent, the neural network lacks information to 
determine snow density. As a result, the weighting coefficients 
do not exhibit convergence. Different frequencies will give 
different ratio of mean-grain radius to wavelength. Volume 
scattering depends strongly on mean-grain size. For inverse 
problem, if the multi-frequency measurements are absent, the 
neural network lacks information to determine mean-grain 
size. In such a case the weighting coefficients do not converge. 

v. TRAINING BASED ON DENSE MEDIA 
THEORY AND TESTING ON SSMI DATA 

In the previous section, we have demonstrated that neural 
networks perform very well in the retrieval of parameters 
from a full multiple scattering dense medium radiative transfer 
scattering model involving three parameters. The reason for 
choosing only three medium parameters in this initial study 
is of the large increase of training time with increase of the 
number of parameters. (Presently, we are working on a case 
involving four medium parameters and have good success). 
Nevertheless, as an illustration, it is important to see what the 
trained neural network from the previous section of a scattering 
half space will give when applied to real-life data. The example 
chosen in this section is that of the Antarctica in winter (July- 
August) in view of the fact that there is no sharp reflecting 
boundary in the subsurface of the Antarctica which seems to fit 
the configuration of half space that is used in previous sections 
and the winter season fits the dry snow scattering model with 

(c) 
Fig. 3. Performance of the neural network with variation of number of 
iterations. In case (l), the number of iterations is 1000. In case (2), the number 
of iterations is 5000. In case (3) ,  the number of iterations is 10 000. (a) The 
percentage error for mean-grain size of ice in snow. (b) The percentage error 
for snow density. (c) The absolute error for snow temperature. 

zero volumetric water content. However, the real Antarctica 
is a much more situation than just a space 
with three parameters. At least a few more parameters will 
play important roles in the scattering model. H ~ ~ ~ ~ ~ ~ ,  these 
are major points to be considered in the scattering model 
and not for the neural network. In the following, we first 

(3) Brightness temperatures T1gu(k),  T1sh(k),  and T2zU(Ic) 
are inputs, and a m ( k ) ,  d ( k ) ,  and T e m p ( k )  are outputs to 
the neural network. In this case, input has both vertical and 
horizontal brightness temperatures at 19 GHz, and another 
vertical brightness temperature at 22 GHz. 

The testing results are shown in Figs. 4 (a), (b), and (c). 
Fig. 4(a) shows the error for mean-grain size of ice particles 
in snow. Fig. 4(b) shows the error for snow density. Fig. 4(c) 
shows the error for snow temperature. Figs. 4 (a), (b), and 
(c) demonstrate that the errors for case (3) are much lower 
than errors for cases (1) and (2).  This means multifrequency 
and two-polarization measurements are both important for the 
convergence of weighting coefficients. Without either one, the 

summarize the major parameters that should be added in 
the future and comment on their relative importance for the 
Antarctica. Then we illustrate what the trained neural network 
of three parameters of the previous section will give when 
applied to the Antarctica data. 

1. The foremost important effect not considered in the half 
space model is the profile-layered structure nature of the 
subsurface of the Antarctica [27]. The profile includes 
a gradual increase of snow density from small values 
at the surface to large values of ice-like situation in 
the deep subsurface. This layered structure also accounts 
for the large difference between vertical and horizontal 
brightness temperatures that are observed in the Antarc- 
tica. To incorporate these effects into the model require 
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Fig. 4. Testing of the neural network in multifrequency and two-polarization 
effects. In case (l), the input has multifrequency measurements only. In case 
(2), the input has two-polarization measurements only. In case (3), the input 
has both. (a) The percentage error for mean-grain size of ice in snow. (b) The 
percentage error for snow density. (c) The absolute error for snow temperature. 

several more parameters, including the different surface 
and subsurface values for snow density, grain size, and 
temperature and the rates of change with depth. 
Surface roughness parameters are not considered. How- 
ever, in passive remote sensing of snow over Antarctica, 
unlike other scattering problems, the air-snow interface 
in less reflective. Volume scattering, rather than sur- 
face scattering, dominates, and surface scattering is less 
important. 
Snow-melt is not included. However, in this paper, we 
only apply the inversion to winter dry snow. 
Atmospheric effects are not included. This can be in- 
cluded readily in the radiative theory by introducing 
more parameters. 

The dense media model has been used to match exper- 
imental data for different snow condition and have been 
compared well with ground truth information [28]. In this 
section, we use the neural network trained with passive dense 
medium theory to invert three snow physical parameters: 
mean-grain size of ice particles in snow, snow density, and 
snow temperature, from available SSMI data over Antarctica 
in July/August which are brightness temperatures at 19 GHz 
vertical polarization, 19 GHz horizontal polarization, 22 GHz 
vertical polarization, 37 GHz vertical polarization, and 37 GHz 
horizontal polarization. 

To train the neural network, we assume O.Olcm 5 a,(k) 5 
0.055cm, 0.1g/cm3 5 d ( k )  5 0.7g/cm3, and 207 O K  5 
T e m p ( k )  5270 O K ,  which is the same range as in Section 
IV. We also used Tlg,(k),  Tm(k), T 2 z V ( k ) ,  T37dk), T37h(k) 
are inputs, o r n ( k ) ,  d ( k ) ,  T e m p ( k )  are outputs to the neural 
network. We use t, = ( 3  + i0.00025)to at 19 GHz; t, = 
( 3  + i0.00028)~0 at 22 GHz; cs = ( 3  + iO.oOl)t~ at 37 GHz. 
The model is valid for a large range of a, and Temp. We 
chose a fairly large range for a,, and Temp so that any 
possible ground truth is within that range. The iteration number 
used here is 10 000. A set of weighting coefficients is obtained 
after the training and is used to invert the physical parameters 
of snow. Instead of testing on simulated data as done in Section 
IV, we use the 5-channel brightness temperatures from SSMI 
data as inputs to the neural network. Then the outputs of 
the neural network are considered as the three snow physical 
parameters: mean-grain size of ice in snow, snow density, and 
snow temperature of the corresponding geophysical terrain. 
An advantage of using neural network method here is that the 
amount of SSMI data is voluminous and neural network can 
process these data speedily with trained weighting coefficients. 
In this manner we process 30 000 sets of 5-channel brightness 
temperature SSMI data over Antarctica region in 10 CPU 

min on a VAX 3500 workstation and produce contour plots 
of the three physical parameters: mean-grain size of ice 
particles in snow, snow density, and snow temperature for 
the Antarctica region. Fig. 5 shows the results. Figs. 5(a) 
and (b) show, respectively, latitudes and longitudes of the 
Antarctica region which we have investigated, with I and 
J showing the corresponding grid coordinates called polar 
stereographic coordinates. In Fig. 5(c), we show a contour 
of vertical brightness temperatures at 19 GHz for that region. 
In Figs. 5(d), (e), and (f), we show, respectively, the contour 
plots of mean-grain size of ice particles in snow, snow density, 
and snow temperature for the same region. 

To examine the validity of the inversion, we take the outputs 
from the network and use the dense media model to calculate 
the brightness temperatures again and compare them with the 
corresponding brightness temperatures from SSMI data. For 
the SSMI data all over the region where the latitude is greater 
than 70' (Fig. 5 (a)), the rms brightness temperature error is 
19 O K .  The inversion effort in Figs. S(a)-(f) is encouraging 
because we represent the entire Antarctica by only three 
physical parameters which is an oversimplified picture of 
the Antarctica. The low physical inverted temperature can be 
attributed to two reasons. First, the data is taken in winter 
so that the temperature is low. Secondly, Antarctica has a 
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Fig. 5.  Inversion of snow parameters from five-channel brightness temperatures of SSMI data. I, J are the polar stereographic coordinates used by SSMI 
satellites. (a) Corresponding latitudes. (b) Corresponding longitudes. (c) Contour of vertical brightness temperatures at 19 GHz. (d) Contour of mean-grain 
radius of ice particles in snow in cm. (e) Contour of snow density in g/cm3 (9 Contour of snow temperature in O K .  
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profile and layered structure that has been neglected in the 
present three-parameter model. The layered structure generally 
is more reflective and decreases the brightness temperature. 
With that extra reflective effect ignored, the inverted physical 
temperature can be smaller than it should be. 

VI. CONCLUSION 

The inversion of snow parameters from passive microwave 
remote sensing measurements are performed with a neural 
network trained with a dense media multiple scattering model. 
The basic idea is to use the input-output pairs generated by the 
scattering model to train the neural network. The total training 
time includes the generation of input-output pairs based on 
dense media theory and the training of the neural network 
with the input-output pairs and backpropagation algorithm. 
The training time can be large. However, once the neural 
network is trained, it can invert snow parameters speedily 
from the measurements. We note that the multifrequency 
and two-polarization measurements are very important for 
the convergence of the weighting coefficients of the neural 
network. Without either of them, the weighting coefficients 
diverge. It is shown that the neural network yields good results 
for the simulated testing data with absolute percentage errors 
for mean-grain size of ice particles in snow and snow density 
less than lo%, absolute error for snow temperature less than 3’ 
K. We also use the neural network with the trained weighting 
coefficients to invert the SSMI data over the Antarctica region. 
The available ground truth information at selected sites can 
also be incorporated in the training by tuning the neural net- 
work. The result neural network can interpolate well between 
the ground truth and the model predictions. This subject is 
also presently studied. Model refinement and improvement of 
inversion algorithm are presently being developed. 
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