M.A. El-Sharkawi and R. J. Marks II, Editors, Applications of Neural Networks to Power Systems, (IEEE Press, Piscataway, 1991) Table Of Contents

PROCEEDINGS OF THE FIRST INTERNATIONAL FORUM ON

APPLICATIONS OF NEURAL NETWORKS TO POWER SYSTEMS

Edited By MOHAMED A. EL-SHARKAWI ROBERT J. MARKS II

SEATTLE, WASHINGTON JULY 23-26,1991

Table of Contents

Session I:	Electric Load Forecasting	
	Short Term Electric Load Forecasting Using an Adaptively Trained Layered Perceptron, M.A. El-Sharkawi, S. Oh, R.J. Marks II and M.J. Damborg, University of Washington; C.M. Brace, Puget Sound Power and Light Co.	3
	An Adaptively Trainable Neural Network Algorithm and Its Application to Electric Load Forecasting, D.C. Park and O. Mohammed, Florida International University; M.A. El-Sharkawi and R.J. Marks II, University of Washington	7
	Short Term Load Forecasting Using Neural Network Approach, D. Srinivasan, A.C. Liew and J.S.P. Chen, National University of Singapore	12
	An Adaptive Neural Network Approach in Load Forecasting in a Power System, T.S. Dillon, S. Sistito and S. Leung, LaTrobe University	17
	Recurrent Neural Networks and Load Forecasting, J.T. Conner, L.E. Atlas and D. Martin, University of Washington	22
	A Study on Neural Networks for Short-Term Load Forecasting, K.Y. Lee, Y.T. Cha and C.C. Ku, Pennsylvania State University	26
	Comparison of the Forecasting Accuracy of Neural Networks with Other Established Techniques, M.C. Brace, J. Schmidt and M. Hadlin, Puget Sound Power and Light Company	31
	Short-Term Load Forecasting Using A Fuzzy Engineering Tool, G. Lambert-Torres, Escola Federal de Engenharia de Itajuba; C.O. Traore, F.G. Mandolesi, and D. Mukhedkar, Ecole Polytechnique de Montreal	36
	Temporal Difference Method for Multi-Step Prediction: Application to Load Forecasting, J.N. Hwang and S. Moon, University of Washington	41
Section II:	Power System Security Assessment and Control	
	Security Assessment of a Turbine Generator Using H Control Based on Artificial Neural Networks and Expert Systems, E. Nascimento, P.K. Goswami, E.M. Kasenally, B.J. Cory, and D.C. Macdonald, Imperial College of Science, Technology and Medicine	49
	Security Assessment Using Neural Computing, B.H. Chowdhury and B.M. Wilamowski, University of Wyoming	54
	Use of Karhunen-Loe've Expansion in Training Neural Networks for Static Security Assessment, S. Weerasooriya and M.A. El-Sharkawi, University of Washington	59
	Neural Networks for Dynamic Security Assessment of Large-Scale Power Systems: Requirements Overview, A.B.R. Kumar, A. Ipakchi, and V. Brandwajn, ABB Systems Control; M.A. El-Sharkawi, University of Washington; G. Cauley, Electric Power Research Institute (EPRI	65

	Query Based Learning in a Multilayered Peceptron in the Presence of Data Jitter, S. Oh, R.J. Marks II and M.A. El-Sharkawi, University of Washington	72
	Hybrid Expert System/Neural Network Hierarchical Architecture for Classifying Power System Contingencies, H.H. Yan, J-C Chow, M. Kam, R. Fischl, and C.R. Sepich, Drexal University	76
	Power Flow Classification for Static Security Assessment, D. Niebur and A.J. Germond, Swiss Federal Institute of Technolgoy, Lausanne	83
	A Neural Networks Approach to Voltage Security Monitoring and Control, K.D. Hui and M.J. Short, Imperial College	89
Section III:	Power System Transients, Faults and Protection	
	Application of Learning Theory to a Single Phase Induction Motor Incipient Fault Detector Artificial Neural Network, M. Chow, G. Bilbro, and S. Yee, North Carolina State University	97
	Fault Detection and Diagnosis of Power Systems Using Artifical Neural Networks, K.S. Swarup and H.S. Chandrasekharaiah, Indian Institute of Science	1 02
	Unsupervised Learning Strategies for the Detection and Classification of Transient Phenomena on Electric Power Distribution Systems, D. Lubkeman, C. Fallon and A. Girgis, Clemson University	107
	Fault Diagnosis System for GIS Using An Artificial Neural Networks, H. Ogi, H. Tanaka, and Y. Akimoto, Tokyo Electric Power Company; Y. Izui, Mitsubishi Electric Corporation	112
	Application of Neural Networks in Numerical Busbar Protection Systems (NBPS), K. Feser, and U. Braun, University Stuttgart; F. Engler and A. Maier, ABB Relays AG	117
	Application of Artificial Neural Network in Protective Relaying of Transmission Lines, S.A. Khaparde and P.B. Kale, Indian Institute of Technology; S.H. Agarwal, TATA Electric Cos.	122
Section IV:	Power System Stability and Control	
	An Artificial Neural-Net Based Method for Estimating Power System Dynamic Stability Index, H. Mori, Meiji University	127
	Dynamic Implications of Using Neural Networks as Controllers, R.J. Thomas and E. Sakk, Cornell University	134
	Genetic Algorithms Approach to Voltage Optimization, T. Haida and T. Akimoto, Tokyo Electric Power Co., Inc.	139

	Application of Neural Network Based Fuzzy Control to Power System Generator, K. Saitoh and S. Iwamoto, Waseda University	144
	Neural Network Based Preventive Control Support System for Power System Stability Enhancement, H. Saitoh, Y. Shimotori and J. Toyoda Tohoku University	1 49
	A Hybrid Artificial Neural Network/Artificial Intelligence Approach for Voltage Stability Enhancement, S.V. Vadari, ESCA Corporation; S.S. Venkata, University of Washington	154
	On-line Training of Neural Network Model and Controller for Turbogenerators, Q.A. Wu, B.W. Hogg, and G.W. Irwin, The Queen's University of Belfast	161
Section V:	Identification and State Estimation	
	Artificial Neural Network as a Dispatchers' Aid in Alarm Processing, R. Karunakaran and G. Karady, Arizona State University	1 69
	Artificial Neural Networks Based Steady State Equivalents of Power Systems, Y. JiLai and L. Zhuo, Harbin Institute of Technology	174
	Approximation of Power System Dynamic Load Characteristics By Artificial Neural Networks, R.J. Thomas and B-Y Ku, Cornell University	178
	Fish Identification From Sonar Echoes-Preprocessing and Parallel Networks, N. Ramani, W.G. Hanson, P.H. Patrick and H. Anderson, Ontario Hydro Research Division	183
	Neural Network Application to State Estimation Computation, T. Nakagawa, Y. Hayashi and S. Iwamoto, Waseda University	188
Section VI:	Power Quality	
	Power Quality Monitoring Using Neural Networks, R. Daniels, Southern California Edison	1 95
	Neural Net Based Correction Of Power System Distortion Caused By Switching Power Supplies, B. Jayaraman, M. Durham, K. Ashenayi and R. Strattan, The University of Tulsa	198
Section VII:	Power System Operation and Planning	
	Identification of Power System Emergency Actions Using Neural Networks D. Novosel and R.L. King, Mississippi State University	205
	A Perspective on Use of Neural-Net Computing in Training Simulator	210

	Design, Y-H Pao, Case Western Reserve University; D.J. Sobajic, Case Western Reserve University and AI WARE, Inc.	
	A Hybrid Neural Network and Expert System for Monitoring Fossil Fuel Power Plants, T. Kraft, K. Okagaki, R. Ishii, and P. Surko, Science Applications International; A. Brandon, A. DeWeese, S. Peterson, and R. Bjordal, San Diego Gas and Electric Company	215
	A Solution of Generation Expansion Problem By Means of Neural Network, H. Sasaki, J. Kubokawa, and M. Watanabe, Hiroshima University; R. Yokoyama and R. Tanabe, Tokyo Metropolitan University	219
Section VIII:	Advances in NN Technologies	
	Toward Constructing Optimal Feedforward Neural Networks with Learning and Generalization Capabilities, J.L. Yuan and H.D. Chiang, Cornell University; C.J. Lin, T.H. Li, Y.T. Chen and C.Y. Chiou, Taiwan Power Company	227
	On the Number of Training Points Needed for Adequate Training of Feedforward Neural Networks, K. Hashemi and R.J. Thomas, Cornell University	232
	Finite Precision Error Analysis for Neural Network Learning, J.L. Holt and J.N. Hwang, University of Washington	237
	Back-Propagation as the Solution of Algebraic-Differential Equations for Artificial Neural Network Training, J.J. Sanchez-Gasca and D.B. Klapper, General Electric Company; J. Yoshizawa, Tokyo Electric Power Company	242
Section IX:	Economic Dispatch, Unit Commitment and VAR Control	
	Artificial Neural Net Approach for Capacitor Placement in Power System P.K. Dash, S. Saha and P.K. Nanda, Energy Research Center, Regional Engineering College	247
	Application of Genetic Based Algorithms to Optimal Capacitor Placement, V. Ajjarapu and Z. Albanna, Iowa State University	251
	Application of Artificial Neural Networks to Unit Commitment, M.H. Sendaula and S.K. Biswas, Temple University; A. Eltom and C. Parten, University of Tennessee; W. Kazibwe, Power Technologies, Inc.	256
	An Application of Artificial Neural Network to Dynamic Economic Load Dispatching, Y. Fukuyama and Y. Ueki, Fuji Electric Corporate Research and Development Ltd.	261
	Neural Networks as a Tool for Unit Commitment, P. Ronne-Hansen and J. Ronne-Hansen, Technical University of Denmark	266
	Joint VAR Controller Implemented in an Artificial Neural Network Environment, G. Neily and R. Barone; G. Josin and D. Charney.	271

Neural Systems, Inc.

Section X:	Power System Monitoring, Observability and Diagnosis	
	Development of Nuclear Power Plant Diagnosis Technique Using Neural Networks, M. Horiguchi, N. Fukawa and K. Nishimura, Toshiba Corporation	279
	Application of a Revised Boltzmann Machine to Topological Observability Analysis, H. Mori, Meiji University	283
	Artificial Neural Network & Pattern Recognition Approach for Narrowband Signal Extraction, P.K. Dash, P.K. Nanda and S. Saha, Energy Research Centre, Regional Engineering College	288
	A New Fast Method For Supplying Measures to Avoid the High Voltage Mode of Electromagnetic Voltage Transformer, Y. JiLai, G. Zhizong and L. Zhuo, Harbin Institute of Technology	293
	Neural Networks for Topology Determination of Power Systems, A.P. Alves da Silva, V.H. Quintana and G.K.H. Pang, University of Waterloo	297