Adaptively Trained Neural Networks
and Their Application to Electric Load Forecasting

Dong C. Park and Osama Mohammed
Dept. of Electrical and Computer Eng.
Florida International University

Miami, FL 33199

Abstract

A training procedure that adapts the weights of a
trained layered perceptron type artificial neural network
to training data originating from a slowly varying non-
stationary process is proposed. The resulting adaptively
trained neural network (ATNN), based on nonlinear pro-
gramming techniques, is shown to adapt to new training
data that is in conflict with earlier training data with af-
fecting the neural networks’ response minimally to data
elsewhere. When the ATNN is applied to the problem of
electric load forecasting, it is shown to significantly out-
perform the conventionally trained layered perceptron.

1 Introduction

In the training of layered perceptron, an assumption of
stationarity of the training data is typically made. In a
number of cases of interest, however, the training data
is a slowly varying nonstationary process. We desire a
training procedure that adapts the trained perceptron’s
response to the current training data, but does not require
detailed knowledge of the previous training data. In order
for the layered perceptron’s weights to adapt to the slowly
varying non stationarity, such a procedure should (1) still
respond appropriately to previous training data if that
data is not in conflict with the new training data and (2)
adapt to the new training data, even when it is conflict
with portions of the old data.

We propose a procedure for such adaptation which is
applicable when the training data’s stationarity varies suf-
ficiently slowly. Our procedure for adaptive updating as-
sures proper response to previous training data by seek-
ing to minimize a weight sensitivity cost function while,
at the same time, minimizing the mean square error nor-
mally ascribed to the layered perceptron. The process is
illustrated through application to an interpolation prob-
lem and by its use on a electric load forecasting problem
with data collected by a power industry.

2 Formulation of Problem

A three layered perceptron type neural network (NN) is
used to illustrate the ATNN algorithm. A general deriva-
tion of the ATNN algorithm with more than three layers
can be found in [1]. Assume a NN with N sets of data,

{(x(1),d(1)), (x(2),d(2)), - - -, (x(N), d(N))}

where we assume that x(i) is I-dimensional vector and
d(i) is scalar. The NN is assumed to have one hidden
layer with h hidden neurons. The matrix W represents
the weight matrix between the input and hidden neurons
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and v denotes the weight vector which links the hidden
and output neurons. The dimensions of W and v are
I x h and h x 1, respectively.

For a given input data vector, x(i), the output of the
NN, y(7), is given by :

y(i) = fvTu] and w=FWTx(@)] (1)

where uj, 1 < j < h, represents the activation of the ji#
hidden neuron, the superscript T denotes the transpose
of a matrix or vector, and f[] is the sigmoid function,

fle)=1/(1+e %),z €R.
We assume that W(N) and v(N) are the weights that
minimize the error function with N sets of data [2]:

|
EN) =3 Z(d(i) - y())* )
3 Problem Statement

The objective of ATNN is given as follows:
Given W(N), v(N), and (N + 1) sets of data, deter-
mine W(N + 1) and v(N + 1) such that

E(N+1)=E(N)+ %(d(N +1)—y(N+1))? (3)

is minimized in such a manner that y(N+1) & d(N +1).

4 Algorithm Development

In order to accomplish the given objective, the lineariza-
tion process around the current operating point, is first
used. Equations in (1) yield

d(N+1) = fvT(N+1)u] = f[(v(N) + Av)Tu]  (4)

where
u = f[(W(N) + AW)Tx(N + 1)]. (5)
The linearization process expands (4) and (5) in a trun-
cated Taylor series about the state of interest, { x(N +
1), W(N+1) }. Such a linearization is used in other adap-
tive signal processing techniques such as the extended
Kalman filtering [3] and quasi-linearization [4].
If we define b = WT(N)x(N+1) and Ab = AWTx(N+
1) and apply a first order Taylor series expahsion to (5),
we get

u = f[b+ Ab] ~ £[b] + (V},£[b]) Ab
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where Vf[b] is the gradient of f [b] with respect to b.
This approximation limits the perturbation, f[b] to be
small enough so that Ab < f[b]/H, where H is the Hes-
sian of f[b] and H < 1.

Since fi[] = f[], the i** component of f[b] is only a
function of b; ( that is, fi[b] = fi[b:i],1 < i < h) and

aj,;'b[Jb] = fIb:)(1 = fIb]) 6icj = wi (1 = uf) 6i—j,

this yields
Vbu" = diagfuj(1 — u}), -, up(l - up)]

where 6, the Kronecker Delta, is one for k = 0 and is
otherwise zero. Also, uf = f[b;] is the activation of 7**
hidden neuron for the new input data with the old weight
such as

u = [uf, 6, up]T = f[WT(N)x(N + 1))
Therefore, the activations of hidden neurons are given by:
ux~u* 4+ (Vpu') AWT x(N 4 1). (6)
From (4), we get
FYUA(N + 1)] = vI(N)u + AvTu )

where f~1[z] = In(z/(1 — z)).
By substituting (6) into (7) and assuming Av < v, we
get

FTHAN+ 1)) = v (N)u*
~ vI(N)(Vpu )AWTx(N + 1) + AvTul8)

The weight perturbation matrix AW is now rearranged
to a vector form as follows:

AW,yoo = [AWyee, 1A Wyec,2 - AWyee p)
where p = h x I. Then Eq. (8) can be rewritten as

c1 = [AWL,, : AvT][ul™ : w*T]T = zTa (9)
where c;,a, and z are vectors defined as

et & FUAN + 1)) = vI(N)u?,

z & [AW?

vece

adf [uJ‘T cuT)T,

s AvTT,
and u' is a solution of

AW, ul = vI(N)QAWTx(N + 1). (10)
Since Eq. (11) has h x (I+1) unknowns, there exist many
sets of solutions. The most suitable solution among them
should have minimum effect to the previous set of data.
We are therefore motivated to form a sensitivity matrix
f y(i) over a weight change.

If we define

Bi = 5(d(0) ~ (1)),
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then the sensitivity measure for W and v are:

OE; . . ay(i)
B -G
JE; dy(i)

(1)

2 = ) - v D)
where wjg, the weight of interconnection between input
neuron j and hidden neuron k, is the jk'* element of W.

Now, define SW; j to be the sensitivity of y(i) due to
small changes in Wj, and SV to be the sensitivity of
y(7) to the vy’s:

SWijk
SVik =

y(1)(1 = y(3)) v ue(1 — ux) x;
y(3)(1 — y(i)) ux (12)

As a consequence, the change in Ej, AE;, due to the
perturbations in Wj; and Vi yields

OE;

OF;
AE; Y (5) AW +E(6—uk) Avy
ik k

I

Owjy

(Ei)[Aerc,l . 'Aerc,p : A'ul - A’Uh]

X[SWip -+ SWip : SVin---SVin]™  (13)

where ¢; = —(d(i) — y(i)), 1<i< Nandp=1Ixh.
Equivalently,

AE=ASz (14)
where
A = diagfe, €2, -, EN]
SWi 1 SWip, SVia SVin
s=| L |
SWh 1 SWnp, SVna SVN R

where z is a q x 1 vector defined in (9) and g =p+h =
(I+1)xh.

With the presense of the (V +1)°* data which requires
d(N 4 1) = y(N + 1), the objective function of (3) can be
changed to

J =

| =

N 1 N
E; - FE; 2= 2
;( wewy = Eiwvan)? = 3 Z_; AE;

where E; w(ny and E; w(n41) are the errors for the ith
data coupling with {W(N), v(N)} and {W (N + 1), v(N +
1)}, respectively. Or in matrix form by Eq. (14),

1

J = 5(AE)T (AE) = %zT Kz (15)

where K = ST (ATA)S. Note that K = KT.

_ The problem we have turns out to be a standard non-
linear programming problem. Specifically,

L. 1
minimize J(z):izTKz, st. z¥a=c.

Geometrically, an equi-cost line of the cost function
J(z) represents a g-dimensional hyperellipse centered at



the origin of the z plane and the constraint zTa=c;is
a (¢ — 1) dimensional hyperplane on the z plane. Note
that the the eigenvalues and eigenvectors of K determine
the shape of J(z). Since z represents the perturbations in
weights, z should be limited to meet linearization assump-
tion of the truncated Taylor series. At the same time, 1t
is necessary to allow z to be large enough so that we can
have at least one solution on the zT a = ¢; plane.

One way to find the boundary constraint in z is the use
of the projection method; to find the projection point,
%, on the zT a = ¢, plane from the origin of z and set
the boundary such as —mz < z < mz with m > 1. The
projection point is given by

(16)

c
A boundary, —mz < z < mz, assures having an inter-
section with zT a = ¢;. The larger the m, the smaller
the J(z) can be. The larger m, however, may allow the
resulting solution to violate the Taylor series expansion
used in (6).

By combining the selected boundary constraint with
our problem, we can rewrite our problem as

z=c a/a" a.

minimize

1
J(z) = §zTKz

s.t. zTa=c¢; and —mz <z <mz(l7)

There exists a variety of methods to solve this type of
problem in the field of nonlinear programming includ-
ing the gradient projection method, the reduced gradient
method, and the convex simplex method. Among these
method, is the reduced gradient method (RGM) with a
linear constraint chosen for our problem since it fits best
our problem.

A brief description of the RGM will be given in this
paper because of the limitation on the number of pages
of paper. More detailed explanation about the RGM can
be found in {5].

The RGM starts with partitioning of variables into two
groups: independent and dependent. The cardinality of
independent group is the number of linear constraints.
Since there is one linear constraint in our problem, we will
have one dependent variable. The other (¢ — 1) variables
are assigned as independent variables.

. The basic idea of the RGM is to minimize the cost func-
tion iteratively by using the steepest descent method. The
negative gradient of each independent variable determines
the direction of movement of the independent variable.
The movement of a dependent variable is dictated by the
linear constraint. If we denote dependent and indepen-
dent variables as z, and zg respectively, the problem in
(17) can be written as:

C 1
minimize J(24,2g) = -2-(z0,,z,g)T K (za,25) (18)

s.bt. Zaag +agT zg =c¢; and —mz <z < nfL9)

where a = [aq,a5"]T.

The gradient of J(z) is:
V2J(2) =(V., J(2), Vz, J(2)) = Kz = K(24,25).

From (19), the relationship between the movements of z,
and zg is:

1
Azy = ——a—apTAZﬁ. (20)

1127

This movements in the iterations for minimum J(z)
guarentees that every solution is on the (¢-1) dimen- -
sional hyperplane given in (19). By using the relationship
(20), the amount of movement for zq, V., J(z), can be
decomposed into the amount of movement for zg. The
gradient with respect to zg, (the reduced gradient of z),
instead of z, is found as:

(21)

1
rT = Vg, J(24,28) — ;—V,a J(2a,25) ag

where r = [r1,72, -, 7q-1]".

Since the solutions by the RGM should satisfy the in-
equality constraint given in (19), the vector zg should not
move to the direction of its gradient unless the resultant
vector is inside of the boundary during its iteration. »

We desire that the RGM provides us the global min-
imum solution of J(z) within the boundary constraint.

The globalness can be achieved if the cost function isa -

convex function and the boundary set formed by the con-

straint is a convex set. The convexity of the cost function

J(z) and the constraint set B is proven in [1] and [6].-
Therefore, the solution by the RGM is global minimum

with the given constraint.

5 Experiments and Results

The NN approach has been proposed for several power
system applications including security assessment and
electric load forecasting [7-9]. When NN approach is com-
pared to classification method such as the Classification
and Regression Trees, NN approach shows superior per-
formance in terms of accuracy [10].

Recently proposed neural network approach for the
electric load forecasting has several key features that
make it highly suitable for the electric load forecast-
ing. For example, it does not require any preassumed
functional relationship between electric load and other

weather variables. One can view the NN as a nonlinear
mapping tool between weather variables and electric load

without the need for predetermined model.

Although the NN is very promising tool in load fore-
casting, several key issues should be addressed. The non-
stationarity of the electric loads and weather variables is
one of them. Since most of the existing training algo-
rithms including Error Back Propagation algorithm as-
sume the stationarity of the training data, those algo-
rithms have their own limitation of performance when
they are applied to the electric load forecasting problem.
In this sense, the proposed ATNN algorithm will be suit-
able for the electric load forecasting problem where the
load profile'is dynamic in nature with temporal, seasonal,
and annual variations.

In order to demonstrate use of ATNN, we applied it
to the electric load forecasting problem. Short-term load
forecasting (several hours to a few days lead time) is a
very useful tool for several applications such as economic
allocation of generation, energy transaction, and system
security analysis. Hourly temperature and load data for
the Seattle/Tacoma area in the interval of Nov. 1, 1988
- Feb. 28, 1989 and Nov. 1, 1989 - Feb. 25, 1990 were
collected and provided for us by the Puget Sound Power
and Light Company.

For given data set, NN’s were trained and tested for the
hourly load forecasting with lead time of 48 hours. First,



a standard Error Back Propagation algorithm is used for
the initial weights of the NN using the first data set, Nov.
1,1988 - Feb. 28, 1989. The other data set is, then,
continuously applied to the initially trained NN with 24
data each time. The ATNN adapts the trained NN by
sequentially using the latest 24 data points (last 24 hours
of data) while the regular NN simply augments training
data set with 24 new entries. One of the topologies of
NN’s used for our experiment was as follows:
Input:(k, Tk - 168, Tk-50, Tk—49, Tt -a8, Tk,
Li-168, Lk—50, Lx—49, Lx-43),

Output: L, and 4 hidden neurons in one hidden layer,
where £k is the hour of the day and T; and L; represent the
temperature and load at the hour i and j, respectively.

To compare the performances of different training al-
gorithms, the following error measure for daily average
error was used:

24
1 | Ly — L, |
= — E — = x 100%
percent error 2 2 s X o

where Ly and L) denote actual and forecasted loads at
hour k.

The mean(m) and standard deviation (o) in percent
errors of forecasting over the period of Nov. 1, 1989
through Feb. 25, 1990 were measured for the both of the
Error Back Propagation (EBP) and ATNN algorithms.
ATNN shows m = 2.78% and o = 0.47% while EBP
shows m = 3.69% and ¢ = 0.77%. The improvement
of ATNN over EBP was especially significant when the
weather condition changes abruptly.

6 Conclusion

In this paper, an adaptive training algorithm for a lay-
ered perceptron has been proposed. The algorithm uses
previousely trained network to adapt the weights for the
new data. Conventional learning algorithms, such as error
backpropagation, can give averaged result for inconsistent
datat which can occur often in a nonstationary environ-
ment.

This adaptively trained neural network utilizes lin-
earization process around the current operating point and
a nonlinear programming technique.

We have demonstrated use of the ATNN by its ap-
plication to the nonstationary problem of electric load
forecasting where the seasonal or annual load profile can
change severely.
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