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Abstract—A training procedure is proposed that adapts the
weights of a trained layered perceptron artificial neural net-
work to training data originating from a slowly varying non-
stationary process. The resulting adaptively trained neural net-
work (ATNN), based on nonlinear programming techniques, is
shown to adapt to new training data that is in conflict with ear-
lier training data without affecting the neural networks’ re-
sponse to data elsewhere. The adaptive training procedure also
allows for new data to be weighted in terms of its significance.
The adaptive algorithm is applied to the problem of electric
load forecasting and is shown to significantly outperform the
conventionally trained layered perceptron.

[. INTRODUCTION

N the training of a layered perceptron, an assumption

of stationarity of the training data is typically made. In
a number of cases of interest, however, the training data
constitute a slowly varying nonstationary process. In this
paper, we present a training procedure applicable to such
cases. In order for the layered perceptron’s weights to
adapt to a slowly varying nonstationarity, such a proce-
dure should 1) still respond appropriately to previous
training data if those data are not in conflict with the new
training data and 2) adapt to the new training data even
when they are in conflict with portions of the old data.

We propose a procedure for such adaptation which is
applicable when the training data’s stationarity varies suf-
ficiently slowly. Our procedure for adaptive updating en-
sures a proper response to previous training data by seek-
ing to minimize a weight sensitivity cost function while
minimizing the mean square error normally ascribed to
the layered perceptron. The process is illustrated through
application to an examplar interpolation problem and
through its use on an electric load forecasting problem
with data generated by the power industry.

II. FORMULATION OF THE PROBLEM

Assume a layered perceptron artificial neural network
trained with N sets of data, '

{x(D). d(D). x(2),dQ2)), - -+, (x(N), dN)}

where x (i) and d (i) represent the input and desired output
for the ith data set and 1 < i < N. We assume that x (i)
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is an I-dimensional vector and d (i) is scalar. The layered
perceptron is assumed to have one hidden layer with A
hidden neurons. The case for more than one hidden layer
is given in Appendix I. The matrix W represents the
weight matrix between the input and hidden neurons and
v denotes the weight vector which links the hidden and
output neurons. The dimensions of Wand v are / X h and
h X 1, respectively.
For a given input data vector, x (i), the output of the
layered perceptron of y (i) is given by
y(@) = flv"u] (M
u=fIWx@) @
where u = {u, up, *+ * + , uyl T u;, 1 < j = h, represents
the activation of the jth hidden neuron; the superscript T
denotes the transpose of a matrix or vector; f[ -} is the
sigmoid function; f[x] = 1/(1 + exp (—x)), x € ®; and
f[b] is the h X 1 vector function

f1b) = LAIBL. flb1, - - - . fulbD)".

The sigmoid function for each of the hidden neurons is
assumed to be identical, fi[* 1 =fH[- 1= =f/11=
f[-]. We assume that W(N) and v (N) are the weights
that minimize the error function [1]:

N
ENN) = %gll @iy — yy. 3)

III. PROBLEM STATEMENT
The statement of our problem can now be described as
follows:

Given W(N), v(N), the N sets of data, and (x (N + 1),
d(N + 1)), determine W(N + 1) and v(N + 1) such
that

N+1
EN + 1) =3 2 (@) = y@d)y

“

EN)+ s(d(N + 1) — y(N + D))

is minimized in such a manner that y(N + 1) = d(N
+ ).

IV. LINEARIZATION PROCESS

Linearization of the problem allows for analytic and
implementation tractibility: For (x(N + 1), d(N + 1)),
(1) and (2) yield

dN + 1) = flo"WN + Dul = f[wWN) + Av)"u]l  (5)

1045-9227/91/0500-0334$01.00 © 1991 1IEEE
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where
u=f[WWN+1xWN+ 1]
= fIUWN) + AW x(N + 1)). (6)

We expand (5) and (6) in a truncated Taylor series about
the state of interest, {x(N + 1), W(N + 1)}, that is clos-
est to the current operating state, {x(N), W(N)}. Such a
linearization is used in other adaptive filter techniques,
such as the extended Kalman filtering [2], [3] and quasi
linearization [4]-[6].

Let

b=W©N)x(N+ 1)
and
Ab = AWTx(N + 1),
Application of a first-order Taylor series expansion to (6)
gives
u=fIWN)x(N+ 1) + AW x(N + 1)]
= f[b + Ab]
= fIb] + (V,f[bD Ab

where V, f[b] is the gradient of f [b] with respect to b with
elements df;[b] /db;. This approximation is valid when H
<< 1, where H is the Hessian of f[b]. We require that
the perturbation, Ab (or AW), be small enough so that

Ab << f[bl/H

where the inequality applies to each component of the
vector.

Since f;[ -] = f[ -1, the ith component of f{b] is only
a function of b; (that is, £.[b] = £[b], ] < i < h) and

af;[b1/3b; = df [b,]/db;
=flb] (A - f[bi])f’;—j
=ul(l — ui*)ai-j
then,
Veu* = diag [u{(1 — uf), uf(1 —ud), -+,
ui (1 — ui)
where §,, the Kronecker delta, is 1 for k = 0 and is zero
otherwise. Also, u* = f[b;] is the activation of the ith

hidden neuron for the new input data with the old weight

such as
Foul, o uf 1T = fFIWTN) x(N + D]

u* = luy, u

Therefore, the activations of hidden neurons are given by

u=u*+ (Vyur ) AWxN + 1). 7
Inverting (5) yields
FAN + D] = 0" Wu + AvTu )

where f ~'[x] = In (x/1 — x)).
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From (7) and (8) we find that
FdWN + D] — v (N ur
=vT(N) (Vyu*) AWX(N + 1)
+ AvTux + AvT(Vyut) AWX(N + 1).  (9)

Remember that the perturbation in A W is assumed to be
small in order to use (7). If Av << v, then the third term
of the right-hand side of (9) can be ignored and

f'dWN + D] — v (N)u*

=vT(N) (Vyu*) AWx(N + 1) + AvTu*.  (10)
We rearrange AW into vector form as follows:
Achc = [AW|T T AWIT]T = [Aerc.] e AerQp]

where Aw; is the ith row in AW, and p = h X [. Note that
p is the number of interconnections between the neurons
in the input and the hidden layers. Then (10) can be re-
witten as

&
T

u

[AW(.: Av']

Cj
u*
=z'a (1

where ¢, a, and z are vectors defined as

e = f[dWN + 1] = vT(NV)ux (12)
a= [u‘&T: u*T]T (13)
2= [AW: a0} (14)

and ¥’ is a solution of
AWL u' = v"(N) QAW x(N + 1).

Since there are & X (I + 1) unknowns with one equation,
(11), there exist many solutions. Uniqueness is imposed
by the additional requirement that our solution be con-
strained by the additional conditions in the problem state-
ment. Specifically, we need to change the weights for the
(N + 1)st datum with minimum effect on the previous N
data. We are therefore motivated to find the sensitivity of
y(i) over a weight change. Equation (4) can be rewritten
as

15)

1=

)

N
EN) =3 % (@) = y()’ = 2 E,

The sensitivity for the input weights follows as

oE Ay (i
L= (i) — y()] <i(’—)> (16)
Owy W
and those for the output weights are
OE, , oy
= 1) — ()] <l@> (17)
v, v,

where wy, the weight of interconnection between input
neuron j and hidden neuron k, is the jkth element of W.
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Let
y(@) = flsum] and w = f[sum,]
where
sum, = ; w,v, and sum, = Z WiX;.
A
Thus,

Uy
x=y(i)

ay@) _ <6y(i) ) <3S“m.v _ Oflxl
o, d sum, v, | ax

= y@) (I = y@)u

=SV, (18)
and
() _ <ay(i)> duy
Iwy Oouy, Iwy
_ < ay () > <a sum, ouy d sum,
d sum, ouy, d sum, Iwy
_ywp
ax x=y() ¢ a‘x X = Uk !
=y A = y@) vy (1 — w)x
= SWiu (19)

where SV, is the sensitivity of y(i) caused by small
changes in v; and SW, 4 is the sensitivity of y(/) to the
w; ’s. Consequently,

OF,
28 =2 (2 ) aw+ 3 (L) an a0
L\ Ay

Jk \ 0wy

By combining (18), (19), and (20) with (16) and (17), we
obtain

AE[ = (Ei) [Achc,I T Aerc.p: Avl e Al}h]

CISWiy e SW, e en SV e SV

2n

where ¢, = —(d(i) — y(i)),l =i <N,andp =1 X h.
Equivalently, using (20), we can write the matrix equa-
tion

P ’

AE = ASz (22)
where the ith element of AE is AE;:
A = diag {e,, -+, €yl (23)
and
SWLI : SWl.p SVI,I e SV,
s=| .o Coe 24)
SWyy =0 SWN,p SV SV

where zis a g X 1 vector defined in (11) and ¢ = p + h
=+ 1) X h.
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The weights W(N) and v (N) are optimal for minimiz-
ing E(N). With the addition of the (N + I)st datum, d(N
+ 1) = y(N + 1), the objective function of (4) can be
changed to

N
J = % ; (Eiwwy — ELW(N+1))2

where E; y v, and E; yy+ 1 are the errors of the ith datum
with {W(N), v(N)} and {WHNV + 1), v(N + 1)}, re-
spectively. Equivalently, from (22),

J = 3(AE)T (AE)

3(AS2)" (ASz)

= 17"Kz (25)
where K = ST(A7A)S. Note that K = K.

Since there exists only one equation with g unknowns
in (11), the solutions of (11) are on a (¢ — 1)-dimensional
hyperplane. Since small perturbations for W and v are as-
sumed in (7), among the solutions in (11), only those with
small variation in weight space (i.e., small ||z|) are al-
lowable.

The problem is now a standard nonlinear programming
problem. Specifically,

J(2) = 32"Kz

minimize

subject to  z'a = ¢.

A equicost line of the cost function J(z) represents a
g-dimensional hyperellipse centered at the origin of the z
plane. The constraint z’a = ¢, is a (¢ — 1)-dimensional
hyperplane on the z plane. The shape of the cost function
is dictated by the eigenvalues and eigenvectors of K [7],
[8].

When there is no boundary constraint or too loose of a
boundary constraint for the value of z, the choice of z (say
z*) may minimize the cost index J(z), at the cost of se-
verely violating the linearity assumption. If we introduce
a boundary constraint, &3, for z, we can avoid this prob-
lem at a cost of being at a low though not minimum value
of the cost function. However, if we use too restrictive
(or tight) a boundary, as shown in Fig. 1, a solution that
satisfies the two different constraints may not exist.

The above discussion suggests that we need to limit the
perturbations to make them small enough to meet the
linearization assumption of the truncated Taylor series.
At the same time, we need to allow z to be large enough
to have at least one solution on the z'a = ¢, plane.

V. BouNDARY CONSTRAINT
Define the boundary as a set of points in the z plane:

[y

where § = [, 5, - -+, L] and}, 2 0,i =1, -

®={z-l<z=<

» q-
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Fig. 1. Contours of constant J (z) when z is of dimension 2. The constraint

imposed by the new data is shown as a line.

The (¢ — 1)-dimensional constraint hyperplane formed
by z’a = ¢, contains a unique point, 2, that is minimal
distance from the origin. The boundary constraint should
include at least Z. In other words, we need to choose 7
that includes at least Z. For the plane zla = ¢, the result
is

1= a_T' (26)

By using Z given in (26), we choose f such as § =
k%, k = 1. This boundary ensures intersection by the lin-
ear constraint plane. A minimal distance point and an ex-
ample of a properly selected boundary constraint for the
two-dimensional z are shown in Fig. 1. The larger the &,
the smaller J(z) can be. Choice of an overly large value
for k, however, may violate the Taylor series approxi-
mation used in (7).

VI. REDUCED GRADIENT METHOD

Using the boundary constraint, our problem now be-
comes

minimize  J(z) = 1z"Kz
subject to  z'a = ¢, 2N
and ze€®, or —f=z=< 1.

There exists a variety of nonlinear programming meth-
ods to solve this type of problem (e.g., the gradient pro-
jection method and the convex simplex method [9]-[11]).
We found the reduced gradient method (RGM) using a
linear constraint most conducive to the problem.

The RGM starts with the partitioning of variables into
two groups: basic and nonbasic. The variables in the basic
group are dependent and the variables in the nonbasic
group are independent. The cardinality of the basic group
is the number of linear constraints. In our case, we will
have one basic variable since there is one given linear
constraint. The other (g — 1) variables are assigned as
independent variables.

Assume that we have a feasible solution, z, which sat-
isfies the constraints in (27). We partition the
g-dimensional variable z arbitrarily into two groups: z =
Zw2g) = 24 zg] T where z,, is a one-dimensional basic
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(dependent) variable and zs is a (¢ — 1)-dimensional non-
basic (independent) variable. The problem in (27) can then
be written as

minimize  J(zq, 25) = 1(Zar 20) T K (245 25) (28)
subject 0z, + @525 = C (29)
(< Guz) < ¥ (30)

where a = [a,, a,g] T

The RGM minimizes the objective function iteratively
only in terms of independent variables. The movement of
a dependent variable is dictated by the relationship in (29).
That is, if zg(k + 1) = zg(k) + Azg, and z,(k + 1) =
24(k) + Az, where k is an iteration index, then

Azqa, + afAzg =0

or
1 7
Azy = - aglAzg. 31
The movement controlled by (31) guarantees that the new
point, (zo(k + 1), zg(k + 1)), is always on the (¢ — 1)-
dimensional hyperplane given in (29).

The steepest descent method is now used to find the
direction of the independent variable in the RGM. The
gradient of each variable determines the direction of
movement at each step of the steepest descent method.
The gradient of J(z) follows as

VzJ(z) = (VZL,J(Z)’ Vz,gj(z)) = KZ = K(Zou ZB)'

Since the relationship between the movements of z,, and
zg should satisfy (31), the amount of movement,
v, J(2), for z, can be decomposed into the amount of
movement for zg. The gradient with respect to zg (the re-
duced gradient of z), instead of z, is found to be
r’ = Vzu-’(zw zB) - aivza‘](zm 25)05 (32)

o

where r = [ry, 1y, == -, Foil’

Since the boundary is a box, each variable has a cor-
responding boundary defined by two sides of the box. In
order to allow the possibility that an independent variable
is about to violate the boundary constraint, we introduce
the working set concept. A constraint is defined as active
if the corresponding variable reaches its constraint bound-
ary which it is about to violate. At each step of the iter-
ation, a subset of boundary constraints that are active at
the current step is chosen. We call this the working set,
denoted by W (zp).

The vector zz moves in the direction of its gradient un-
less it violates its boundary constraint. That is, at each
step, the direction of z5’s movement is

71 i¢ W(Zﬁ)
Azg; =
0,

ie Wi(zp).
If an independent variable reaches an edge of its boundary
constraint, it becomes part of the working set. This pro-
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R

linear constraint

hyperplane

Fig. 2. Boundary constraints and searching.

cess is illustrated in Fig. 2. The numbers in Fig. 2 denote
the resultant minimum cost points from the RGM. During
iteration, intermediate solutions move as 0 = 1 = 2 —
3 and the boundary of z, is reached. This occurs, even
though the gradient information implies use of path 4’ to
minimize the given cost function. The intermediate solu-
tion should not choose the path 4’ since it violates the
boundary constraint. Instead, by choosing path 4, the so-
lution guarantees z, < f. In this case, the constraint z,
=< b is called active and the corresponding variable z, is
included in the working set. A more detailed explanation
can be found in [9].
Assume that a point is found to be such that

r,=20 VigW(zs)

but there exists j € W (zg) such that either r; < 0 and j
have been put into the working set because the corre-
sponding variable violated its lower boundary constraint,
orr; > 0 and j have been put into the working set because
the corresponding variable violated its upper boundary
constraint. Then j is deleted from the working set. Once
the amount of movement, Azg, of 75 is found, Az, is
given by (31).

The RGM generally converges to a relative minimum
in most of the cases. There also exists a modified RGM
which yields global convergence [9]. The convex simplex
method is another variation of RGM which guarantees
global convergence [12]. We found little performance
variation in our simulations.

We desire the solution by the RGM to be the global
minimum within the boundary constraint. This is ensured
if the boundary constraint ® is a convex set and the cost
function, J(z), is a convex function. Both conditions are
present in our problem. We investigate the globalness of
the relative minimum obtained with RGM by utilizing the
convexity properties of the cost function, J(z), and
boundary constraint, ®. The following definitions estab-
lish the convexity of a function and a set.

Definition 1 (Convex Set): A set Q in E" is said to be
convex if Vx;, x, € Q and for 0 < o < 1, the point

X3 =ax; + (1 - a)x,

is also in Q. Clearly, since ® is a box, it is convex.
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TABLE 1
A SUMMARY ATNN ALGORITHM

. Begin

. Calculate A and S by using N data as described in (23) and (24).
. Find K such that K = ST(ATA)S.

. By using (13)-(14), find the linear constraint equation:

z’a =c,.

W= O

4. Find the boundary constraint, 7 =2z by using

5. Perform the reduced gradient method and find z which minimizes the
cost function:

J@@) = 32"Kz
with the constraints z7a = ¢ and — ¢ <z < ¢.
6. Find AW and Av by rearranging z and resulting AW, .
[AWT . AvT) =77,
7. Update W(N) and v(N):
WIN + 1) = WN) + AW
v(N + 1) = v(N) + Av.
8. Stop.

Definition 2 (Convex Function): A function f defined
on convex set { is said to be convex if Vx;, x, € Q and
VaeR,0<a=<l,

floxy + (1 — a)xy) < af(x) + (1 — o) flxy).

Lemma 1: The cost function J(z) is convex. (A proof
of Lemma 1 is given in Appendix II).

Since J(z) is a convex function defined on the convex
set 2, any achieved relative minimum of J(z) is the global
minimum.

A summary of the adaptively trained ATNN is given in
Tables I and II.

VII. SUSCEPTIBILITY TO DRIFT

A recursive algorithm for adaptive training must pos-
sess two features: it should adapt to new data and it should
not drift. Drift is an undesired feature, wherein the
weights of the layered perceptron change even when the
new data do not change the input/output relationship of
the existing neural network.

Assume that the trained network with {W(N), v(N)}
has the following functional relationship between the in-
put, x, and the output, y:

y = fIWN), v(N); x) (33)

and
D = {(x(i),d@i); 1 =i < N}.

If we use additional data, (x(N + 1), d(N + 1)), that are
not in D but satisfy (33), both AW and A v should be equal
to 0. Otherwise, the proposed adaptive procedure is said
to drift. We will now show that our proposed algorithm
does not drift.

From (11) and (13),

y=dWN + 1) = f(WN), v(N); x(N + 1))
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TABLE II
A SUMMARY OF THE REDUCED GRADIENT METHOD

0. Set initial feasible solution z = 2.
1. Setz, =ziand z3 = [25, 23, " " *

where {¢} denotes the empty set.
2. Calculate

.z,]7. Initialize W (z) = {¢},

1
rl=V_J(Ze 25 — A CTLCRERL

3. Find the direction of the movement of z;:

A T
i = 0.

4. Reconstruct the working set ‘W (z) if necessary.

5. We stop if the point is an acceptable solution. This occurs when |Az]|
< ¢, where ¢ is a convergence measure, or Vi € W (zy). Otherwise,
find

i g Wi(zg)
i€ W(zy).

i
Az, = ——alAz,.
2 8%

6. Find v,. v,. and v, such that
max {y;: —l, < Io + 1AZL = iy 2 0}

max {y:: ~ 03 = 25 + 1825 < f5 7y, = 0}

min {y3:J@ + 71:2:0 = 13 < 7,0 = 7; < v}

7. Calculate z =z + v;2.

8. If y3 < v,, goto 2.
Otherwise, declare the dependent variable to be independent and
declare one of the independent variables, which is positively inside of
the nonlinearity constraint, to be dependent. Update a, and a;. Go to
2.

and we have
) = 0.

Consequently, z’a = 0 becomes the line constraint for
this problem. From (26), the closest point which satisfies
this line constraint is

" ca
=12 =9
‘T
Since £ = 0 gives
J=17"Kz =0

the initial point to the RGM, Z = 0, is the solution. This
implies that

AW =0 and Av = 0.

Therefore, we conclude that there is no drifting in the
ATNN. Note, alternatively, that the drift problem can also
be addressed by triggering the ATNN only when the out-
put error exceeds some specified threshold.

VIII. CHOOSING WEIGHTS ON THE E;’s

The weighting coefficient, v;, on each of the error terms
of (3) can be used to weight the error function as follows:

N N
EN) =3 % v(dG) = y()' = L E
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where E(N) is a weighted version of E(N) and

E = 3vd() — y@)"
By introducing this weighting coefficient, y; = F (i), we
can control the comparative importance of the previous

data.
The weighting coefficients can be incorporated into the

ATNN as follows. Since
E =37 = y@)' = vE
we can rewrite (22) with the WCGF:

AE =TASz = ASz
where A = T'A and

I' = diag [y, v2, * " » Wl
Therefore, we can consider the weighting coefficients in
the ATNN by simply changing A to A.

IX. EXPERIMENTS AND RESULTS

Since Lapedes and Farber [14] suggested their use for
the system identification, the layered perceptron has been
successfully applied to many other system identification
problems [14]-[23]. In the following example ATNN ap-
plications, the layered perceptron is used for system iden-
tification.

First, an examplar problem that has single input and
single output is considered. It nicely illustrates the pro-
posed algorithm graphically. Then, the ATNN is applied
to the electric load forecasting problem in order to illus-
trate its application to highly nonstationary training data.

A. Examplar Problem

We are given a set of one-dimensional input and one-
dimensional output data such that

{(x(1), d(1)), x(2), d(2)), * - -, (x(100), d(100))}.

where x(n) = 0.01(n — 1). A 3-layered perceptron with
ten hidden neurons was trained using error back-propa-
gation to obtain W(100) and v (100), the weights for the
given 100 data points.

In order to illustrate the ATNN, assume that a new data
point (x (101), d(101)) is to be used to update the network
weights and that the new data are

x(101) = x(51) = 0.5
and
d(101) = 1.1 X d(51) = 0.45 + 0.045 = 0.495.

Thus, the new data are inconsistent with some of previous
training data.
Results: We applied our algorithm to the above prob-
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TABLE 111
THE RESULTANT CHANGE IN WEIGHTS FROM USING THE ATNN
Old A New Old A New
Wo.s —1.6941 0.0274 ~1.6667 W, -2.3778 —0.0006 —2.3785
Wy ~1.2054 0.0514 —1.1539 W, 5 -0.5910 —0.0549 —0.6459
W, —1.1859 0.2209 —0.9649 W, 4 —7.5534 —-0.2781 —7.2752
Wy s 15.3013 —0.4345 14.8667 W s —22.4426 0.1881 —22.2545
Wy —1.0096 0.0190 -0.9906 W, —0.9404 —0.0181 —0.9586
W, 5 —1.1323 0.0375 —1.0947 W, —0.4236 —0.0484 -0.4720
Wy« —1.0451 0.0260 —-1.0191 W, s —0.4856 —0.0337 —0.5193
Wo o ~2.0645 0.1131 -1.9514 L —-3.9084 0.0350 —3.8733
Wo 1o 2.1602 0.0125 2.1727 W, o —14.4980 —-0.2369 —14.7349
W, -0.9274 0.0330 —0.8944 W, 1 -0.5305 —0.0427 -0.5732
'y —1.4489 —0.3237 -1.7726 v, —0.6528 0.6081 —0.0446
s -0.1127 ~0.1584 -0.2712 vy —0.4850 —0.1392 -0.6242
vy —4.1520 —0.0143 ~4.1376 vs 2.0000 0.3647 2.3647
[N -0.0708 -0.1916 -0.2625 v, —0.3882 —0.1280 -0.5163
g -0.2301 -0.1413 -0.3715 vy —1.1492 —0.0908 —1.2400
U 1.9850 0.4237 2.4087 vy, -0.2795 -0.1582 -0.4377
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Fig. 3. A performance comparison of the ATNN (dashed line) to (a) pre-
viously trained layered perceptron (solid line) and (b) a layered perceptron
retained with new data (dotted line). The performance of a layered percep-
tron retained with both old and new data is graphically indistinguishable

from (a).

lem and found a set of optimal weights, W(101) and
v(101), as shown in Table III. In order to show the effects
of the new weights on the previous data, we test the lay-
ered perceptron with the new weights. Fig. 3 shows the
changes in outputs for the previous data. Note that the
layered perceptron responds to the desired output of the
new data despite inconsistency between the old and the
new data. (The representation obtained from the neural
net trained with the old data is graphically indistinguish-
able from the training data.)

A comparison is also made between the ATNN and two
other training approaches. In the first alternative method,

a layered perceptron is retrained with only the new data
point using the old network as a point of initialization.
This guarantees that the network, after retraining, pro-
duces a desirable output for the new data. As illustrated
in Fig. 3, the retrained network, however, does not main-
tain proper performance for the old data. Yet another lay-
ered perceptron was trained with both the old and new
data. The layered perceptron trained with the old data was
used for the initialization. The retrained network with this
technique, however, has a performance that is graphically
indistinguishable from that of the performance of the lay-
ered perceptron trained only on the old data.
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B. Application to Load Forecasting

Electric load forecasting is used by electric utility com-
panies for prediction of electric power consumption based
on pertinent data such as past consumption and weather
information.

Electric system load forecasting with lead times from
hours to several days can assist a power system operator
to efficiently schedule spinning reserve allocation. In ad-
dition, the ability to forecast electric system load can also
provide valuable information for possible energy inter-
change with other utilities. Accurate information for
future loads is also useful in detecting many vulnerable
situations in advance if applied to system security assess-
ment problem. Because of the importance of load fore-
casting, forecasts should be accurate and sufficiently
timely to assist the system operator.

1) Approaches: Previous approaches to load forecast-
ing in general fall into three categories. First, the load
pattern is treated as a time series signal and future loads
are predicted by using various time series analysis tech-
niques [24]-[26]. The second approach assumes that the
load pattern is highly correlated with such weather vari-
ables as temperature and wind speed and finds a func-
tional relationship between weather variables and the sys-
tem load. The future load can then be forecast by inserting
the predicted weather information into the predetermined
functional relationship [27]-[30]. The last approach com-
bines the time series approach and the regression ap-
proach by using artificial neural networks. More details
on this application and corresponding results can be found
in [22], where forecasting was performed by training a
layered perceptron with conventional error back-propa-
gation. A comparative study on different problems, in-
cluding the load forecasting problem, contrasting the per-
formance of a layered perceptron and the classification
and regression trees (CART) has been recently reported
by Atlas et al. [23].

2) Experiments: Hourly temperature and load data for
the Seattle/Tacoma area from November 1, 1989, to Feb-
ruary 9, 1990, were collected and provided for us by the
Puget Sound Power and Light Company. Our focus is on
hourly load forecasting with lead time of 48 hours for a
normal weekday (i.e., no holidays or weekends). All data
except the last nine days (February 1-9) are used for train-
ing the layered perceptron, and the data of the last nine
days are used for testing the trained layered perceptron.
As a topology for the layered perceptron, a good choice
of input variables for the output, L;, was found to be

(ks T~ 1685 Ti—s0> Ti—a95 Ti-ass
Ly 168> Li—50> Li—a95 Li—as, T2)

where & is the hour of the day and 7; and L; represents the
temperature and load at hour i and j respectively. The lay-
ered perceptron used in this experiment has 11 inputs (in-
cluding a bias term), five hidden neurons, and one output
neuron.
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TABLE IV
A PERFORMANCE COMPARISON OF THE ATNN TO REGULAR LAYERED
PERCEPTRON BY THE AVERAGE OF ABSOLUTE ERROR (%) IN THE ELECTRIC
LoAD FORECASTING PROBLEM

2/1 2/2 2/7 2/8 2/9
ANN 6.14 6.53 5.28 2.92 2.36
ATNN 2.18 2.26 4.65 2.36 2.79

First, a standard error back-propagation algorithm is
used for training the layered perceptron. The ATNN al-
gorithm is then applied to the trained layered perceptron
to improve the performance. The ATNN adapts the trained
layered perceptron by sequentially using the latest 24 data
points while the regular layered perceptron simply aug-
ments the training data set with 24 new entries.

3) Results: The actual temperatures are used in the
testing stage to find the effects of the ATNN algorithm on
the forecast loads since forecast temperatures deviate from
actual temperature by as much as 14% (February 1, 1990).
Use of forecast temperatures therefore distracts the
ATNN.

Daily average errors are calculated as

24

L. —L;
percent error = > kgl ‘-‘—Lk—ki

x 100%
where L, and L] denote actual and forecast loads at hour
k.

As shown in Table IV, the comparative results imply
that the ATNN gives improved results except for day 5.
The improvement is especially significant on day 2, when
the weather changed abruptly. Fig. 4 depicts a compara-
tive example of five days of forecasts.

These results were generated using a value of k = 2.
As with the step size and momentum terms in error back-
propagation, the choice of a good value of k remains
somewhat of an art.

X. CONCLUSION

In this paper, an adaptive training algorithm for a lay-
ered perceptron has been proposed. The algorithm uses a
previously trained layered perceptron to adapt the weights
for the new data. Conventional learning algorithms; such
as back-propagation, can give an averaged result for in-
consistent data, which can occur often in a nonstationary
environment.

This adaptively trained neural network (ATNN) uti-
lizes nonlinear programming methods to adapt to tempo-
rally nonstationary training data.

We have demonstrated the use of the ATNN by apply-
ing it to the nonstationary problem of electric load fore-
casting, where the seasonal or annual load change can be
severe. The ATNN has the additional flexibility of allow-
ing importance weighting on training data.



342 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2, NO. 3, MAY 1991

4000 T T T

solid: Acmal Load
dot : Regular ANN Forecast
dash : ATNN Forecast

3500

~ 3000
=1
8
3
2500
1500 : : : . '
0 20 40 60 80 100 120
hours
Fig. 4. A performance comparison of the ATNN (dashed line) to conven-
tional layered perceptron (dotted line) when applied to electric load fore-
casting problem. Solid line represents actual load.
APPENDIX I where
SENSITIVITY MATRIX FOR THE GENERAL CASE Nea
k+ 1
. . . k k+1), (k+1)
Consider a layered perceptron which has n hidden lay- u{,’ =f ZJ Wap Ug
ers and each hidden layer has &, hidden neurons. Assume !
that w{"" is the weight of connection between neuron 7 in
the mth hidden layer from the output layer and the neuron " ® T
- . au® uy’, uy s s Ul
J in the (m — Dst hidden layer from the output layer. T = 3
Then, u® = [\, u’, -, ul]”, where N, repre- du ou
sents the number of neurons in the ith hidden layer from (V. we nu(lk)
f . . u
the output layer and u|” denotes the activation of the neu- )
ron j in that hidden layer. Then the sensitivity of the fth =
(m) : . .
output, y,, by the change of w{”} is given by the following. | Vo ”u}(\’;:
=]: r k ky 7]
1) Form = 1. 6u(1’ au(])
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Proof: For the cases where m > 3, define

(k)
ou;

Sarn = vk + 1, @)

Since

guk—Y qu*—"v u®
u®+D = < ou® > <au(k+l)>

the sensitivity of ™" to the change of u*" is given
by
auﬁk_” _ 6uf,k_” du®
aul(k+l) au(k) auik+l)
r au(f’ ]
PN
I3
= Vu(A]uLk_”
u,
au(_/(+l)
1
vk + 1), (k)
= V,,muf,k_”
Y@k + 1), N (k)
au(k~l) : {au(k—l) au(kAl)}
&+ — G+D> T kD
du du Oy,
k+1) k=11
_a[ul 7“N(A7|)]
u®

y(1k + 1), 1(k)

Y1k + 1), Ny (k)

aut 0 [ au® ]
T o™ | u®0
®
auNA
au(k+l)

Ju*-" ou®
- < u® ><3u”‘+”>'

343

Thus, the sensitivities of activation in the (k — 1)st hid-

den layer by a change in u{**" are

au*b
k+1) — (k+1)
au( 314,-

i

k=1
[

k—1)qT
7 L, ]

s UNy -y

N dul "
T qu®FDe T G 6D
y(ik + 1), 1(k)
V,,(mu(]k_l)
Y@k + 1), Ny (k)
[y Gk + 1), 1(0)
Vaouly ) I
i | v(@(k + 1), N (k)
(V"] [ vtk + 1), 1)
| Vaou, | vk + 1), Ne (k)
At ey 1T
= au(k)

y(k + 1), 1(k)

y(itk + 1), N (k)

As a result, the sensitivities of activations for the neu-
rons in the (k — 1)st hidden layer by the change of acti-
vations for the neurons in the (k + 1)st hidden layer are

YWk + 1), 1(k)

YWNg+ 1k + 1), N (k)
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Therefore, the sensitivities of activation for the neurons
from one layer by the changes of activations for the neu-
rons to the other layer can be calculated in a cascaded
fashion. That is,

ou® m=1 ou®
W™ " o au® D
ou® ("2 au®
T ou™ | o \gu®

au(m—Z) au(mAI)

D ED)
where u” are the activations of neurons in output layer.

Since the change of w(’} affects only " " by an
amount du "~ /8w, the change of u{"~ " affects all the
activations of neurons in the (m — 1)st hidden layer by
the amount of du"" _2’/614,‘”'_ " the change of u ™ ~? af-
fects the neurons in the first hidden layer by
ou'” /ou™ =2 and, finally, the change of u'" affects the

output neuron y, by dy,/du'". Therefore,
Ay, Ay, ou'®

T du D\ (ouf" "
aw™  au™ | =y \gu*tD umh ™
ij J !

(©

= V,,my‘»

This concludes the proof of (34). Q.E.D.

By using the sensitivity of each weight to the output,
the error resulting from the perturbated weights can be
found as in (20):

JE,;
AE = 2 (— ) aw!.
= B (o) v

The sensitivity matrix S for the general case can also be
found by the same method applied for the single hidden
layer case by using (22) to (24).

APPENDIX II
PROOF oF LEMMA 1 (CONVEXITY OF THE COST
FuncTioN)

For our case,
J(2) = 12" Kz.
Thus
J(azy + (1 — @)z,)

= (az; + (1 - a)zz)TK(OlZI + 0~ ®)zy)

azHKazl + azTK( — ®)2,
+ (0 - oz;Kaz, + (1 - 0)’z]Kz,

@’z{Kz; + a(l — «) [z/Kz, + 21Kz

+ (1 — @)’zlKz,. (36)

mﬁ3 au(k) au(m ~2) auj(_m -D
k=1 \Qu**D du{" Y wm™ )
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Let
Q=al@) + 1 - a)J@z)
then
Q@ = az]Kz; + (1 — @)z} Kz
Also,

Q

al +(1 —a) @
= ozzleKz, + a(l — oz)zerzz

+( - waz]Kz; + (1 — o)’zfKz,.  (37)

By combining (36) and (37),

@ - Jazy + (1 — @)z,)
= a(l — o) [z{Kz + 2;Kz, — 2{Kz, — 2]Kz]
=a(l ~ o) (z; —2)" K@z — 2z,) = 0.

Therefore, aJ(z)) + (1 — ) J(z3) = J(az; + (1 — @)z,)
and consequently J(z) is a convex function by Definition
2. Q.E.D.
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