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Abstract—In many machine learning applications, the source of the
training data can be modeled as an oracle. An oracle has the ability,
when presented with an example (query), to give a correct classifica-
tion. An efficient query learning procedure is to provide the good train-
ing data to the oracle at low cost. This paper presents a novel approach
for query-based neural network learning. Consider a layered percep-
tron partially trained for binary classification. The single output neu-
ron is trained to be either a 0 or a 1. A test decision is made by
thresholding the output at, say, 1. The set of inputs that produce an
output of 3 forms the classification boundary. We adopted an inversion
algorithm for the neural network that allows generation of this bound-
ary. In addition, for each boundary point, we can generate the classi-
fication gradient. The gradient provides a useful measure of the

teep of the multidi ional decision surfaces. Using the bound-

ary point and gradient information, conjugate input pairs are gener-
ated and presented to an oracle for proper classification. These new
data are used to further refine the classification boundary, thereby in-
creasing the classification accuracy. The result can be a significant re-
duction in the training set cardinality in comparison with, for example,
randomly generated data points. An application example to power sys-
tem security assessment is given.

I. INTRODUCTION

N many classification machine learning applications, the

source of the training data can be modeled as an oracle. An
oracle has the ability, when queried with an example, to give a
correct classification. A cost, which can be very expensive (e.g.,
a supercomputer emulator), is typically associated with this
query. The study of queries in classifier training paradigms is,
therefore, a study of the manner by which oracles can provide
good classifier training data at low cost.

Query-based learning requires asking a partially trained clas-
sifier to respond to the question, ‘‘What don’t you yet under-
stand?’’. The response of the query is then taken to the oracle.
The oracle, for a price, will respond with the correct classifi-
cation for a given data point. Examples of oracles include com-
putationally intensive simulators, costly experimentation, or a
human expert. The properly classified points from the oracle are
then introduced as additional training data for the classifier. The
use of queries through such a systematic training data genera-
tion mechanism can be viewed as interactive learning. On the
other hand, only the use of available (or randomly generated)
data, is passive learning. In certain problems, when applied
properly, queries can significantly increase the resulting clas-
sification accuracy with a small amount of additional complex-
ity introduced [1].
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In this paper, we consider the use of queries in the training
of a partially trained multilayer perceptron. We propose to use
the inversion algorithm, which allows generation of the network
input (or inputs) that can produce any specified output vector.
For binary classifiers, inversion of a network midway between
the two classifications (i.e., 0 and 1) results in a classification
boundary. This boundary is the locus of input vectors that, with
respect to the neural network’s representation of the training
data, is highly confusing. In addition, for each boundary point,
we can generate the classification gradient. The gradient pro-
vides a useful measure of the steepness of the multidimensional
decision profile. Using the boundary point and gradient infor-
mation, conjugate input pairs are generated, which are sup-
posed to carry the most important information (maximum
confusion) in locating the correct decision boundaries [2], [3].
These points of confusion are presented to the oracle for proper
classification. The choice of whether or not to use an oracle is
dependent on the degree of training and classification complex-
ity. Our approach to query-based learning works best when the
network’s performance is being fine tuned.

The organization of this paper is as following. In Section II,
the backpropagation learning and network inversion algorithms
are briefly discussed. Section III introduces the boundary search
procedure from network inversion and the recursive formula for
gradient computation. A simple toy problem for binary classi-
fication based on this query learning is discussed in Section IV.
Finally, we apply this query learning to a power system security
assessment problem in Section V.

II. LEARNING AND INVERSION OF A MULTILAYER
PERCEPTRON

The forward system dynamics in the retrieving phase of an
L-layer perceptron can be described by the following iterative
equations (forl < i< N;,,,0=!l=<L— 1)

Ni

w(l+1) = ‘; wy(I + Da;(1) + 6,(1 + 1)

Ni
= g wy(1 + Da(1)

a(l +1)

Il

flu(l + 1)) (1

where a;(1)(u;(1)) denotes the activation value (net input) of
the jth neuron at the /th layer; 6;(/) (or wy(l)) denotes the
bias of the jth neuron at the /th layer; w;; (1) denotes the weight
value linked between the ith neuron at the /th layer and the j th
neuron at the (! — 1)th layer; and fis the nonlinear activation
function.

A. Backpropagation Network Learning

The learning phase of a multilayer perceptron uses the back-
propagation learning rule, an iterative gradient descent algo-
rithm designed to minimize the mean squared error E between

1045-9227/91/0100-0131$01.00 © 1991 IEEE

—  ——



132 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2.

the desired target vector {7,} and the actual output vector

{a, (L)}, [4], [51:

oF
wy(1) = wy(l) — 9 aw,(1)
) _OE da(l)
=w;(l) =7 da;(1) owy(1)
= w;(1) = 18,(1) ;3:},“((11)) @
where

E=E({w,(O}. {a(0)}) =1 Z (1 - a(L) (3)

=1
and the backpropagated error signal 8,(/) can be recursively
calculated (see Fig. 1);

JF
6(l) = 9al)
e
i1 oa(I+ 1) 3a(l)
B Nean da(l + 1)
= o+ D=5 (4)

with the initialization error signal §,(L) = dE /da;(L) =
—(t; — a;(L)).

B. Network Inversion

The inversion of a network will generate the input vector
{a;(0)} that can produce a desired output vector. By taking
advantage of the dualiry between the weights and the input ac-
tivation values in minimizing the mean squared error E [see
(3)], the iterative gradient descent algorithm can again be ap-
plied to obtain the desired input vector [6]:

4;(0) = a;(0) — ¢ 34,(0) ~ a;(0) — 5,(0). (s)
The idea is similar to the backpropagation algorithm, where
the error signals are propagated back to tell the weights the
manner in which to change in order to decrease the output error.
The inversion algorithm backpropagates the error signals to the
input layer to update the activation values of input units so that
the output error is decreased (see Fig. 1). In order to avoid the
input activation values {a;(0)} from growing without limits, a
small modification of the updating rule was usually made.

4(0) = (0) ~ 50
_ _ dE  9a;(0)
=4(0) = 3a;(0) u,(0)
0a,;(0)

u;(0) — 18;(0) (6)

du;(0)
where u;(0) = f‘I (a;(0)) is a “‘pseudo’’ net input created to
allow flexible gradient descent search without limiting the dy-
namic ranges (e.g., usually we assume 0 < a;(0) = 1).
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Fig. 1. Illustration of learning with and inversion of a n_lultilayer percep-
tron.

III. BOUNDARY SEARCH AND GRADIENT COMPUTATION

Neural networks have been shown to train better with bound-
ary vicinity data in certain applications [3]. The trained neural
network gives an parametric representation of the true classi-
fication or concept [7}. The representation’s classification
boundary indicates the region of maximum classification am-
biguity; and the representation’s classification gradient mea-
sures the steepness there [8], [9].

A. Boundary Search for Regions of Maximum Ambiguity

Without loss of generality and for simplicity of illustration,
a binary (two-class) classification example is given first. We
want to train a multilayer perceptron with a single output neuron
to classify two types of patterns, i.e., a,(L) is either **0’’ or
““1”’. A good strategy is to evaluate the boundary corresponding
to an output value of 0.5. This can be done by inverting the
trained network with several randomly selected initial input data
points. The inversion algorithm will progress along some tra-
jectory (gradient descent search) and gradually move each ini-
tial input data toward one specific boundary point {8], [9].

To illustrate inversion, a two-layer perceptron with a single
hidden layer of 10 neurons was trained with 50 randomly se-
lected two-dimensional training data for octagonal region clas-
sification, where the classification target is ‘1’ inside the
octagon and ‘0’ without [see Fig. 2(a)]. A perspective plot of
a true classification profile is shown in Fig. 2(b). After 5000
iterations of the training based on the 50 available randomly
selected training data, the neural network was trained to possess
the representation profile shown in Fig. 3(a). There are 57 clas-
sification boundary points, corresponding to an output of 0.5,
created using the inversion algorithm. These are shown in Fig.
3(b).

For classification of multiple classes, where each class (say,
the kth) is presented by the kth output neuron, the boundary (or
the region of maximum ambiguity) for the kth class can also be
determined by searching the points (in the input space) which
give rise to 0.5 activation value for the kth output neuron re-
gardless the values of other output neurons. In other words, the
E measure in (6) is computed based only on the square differ-
ence between the target value and actual value of kth output
neuron.

E=1(t - a(L)).

Consider the example where three-layer perceptron (two in-
put neurons, two hidden layers with 5 and 7 neurons, and three
output neurons) was trained for a four-class (three rectangles
and one background) classification problem, as shown in Fig.
4(a). More specifically, each two-dimensional data input will
be classified as one of the four different classes in terms of three
output neurons’ activation values, i.e., 4 = 100, B = 010, C
= 001, and D = 000. There are 450 uniformly sampled, ran-
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(b)

Fig. 2. (a) Fifty randomly selected two-dimensional training data are se-
lected for octagonal region classification. (b) A perspective plot of the oc-

tagonal region classification profile.

domly selected two-dimensional data used for the training. After
10 000 iterations, 100 classification boundary points were cre-
ated for each rectangle corresponding to an output value of 0.5
at each specific neuron regardless the output values of other
neurons [see Fig. 4(b)].

B. Gradient Computation for Steepness of Classification
Profile

After a neural network is trained, the parametric mapping
relationship between the input and output is established through
the weights. For each point in the input space, we can compute
the gradient p,;(0) of each output neuron (e.g., the kth) with
respect to each input neuron (e.g., the jth). At the boundary,
this gradient is a measure of the steepness there. This gradient

(81, 9.

da, (L)

0(0) = 525 (M

——  —

(a)

0 02 0.4 0.6 038 1
(b)

Fig. 3. (a) A neural network was trained with the data in Fig. 1(a) for 5000
iterations. This is the trained neural network's representation of the octag-
onal region classification profile. (b) Fifty-seven classification boundary
points corresponding to the generalization thresholded at 0.5. These are
the points of highest confusion.

can be recursively computed (based on a simple chain rule) from
Ni+1
0i(1) = 2 au(l+ 1)F (L + D)1+ 1),

lsl=sL-1
(8)
where the initial values are given as g,;(L) = L if i = j; 0
otherwise.

Fig. 5 illustrates the magnitude of the gradients of 30 points
from the 0.5 contour of Fig. 3(a), i.c.,

| gradient| = /Z Q:,(O)z-

IV. CONJUGATE PAIRS FOR REFINING THE BOUNDARY

For each inverted boundary point, a conjugate training data
pair based on the magnitude of gradient can be created [see Fig.
6(a)]. More specifically, two points lying on opposite sides of
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Fig. 4. (a) A four-class classification problem consists of three rectangular
regions. (b) After 10 000 iterations of the training, 100 classification
boundary points were created for each rectangle.

Fig. 5. The magnitude of the gradients of 30 points from the 0.5 contour
of Fig. 3(a).
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Fig. 6. (a) For each inverted boundary point, a conjugate training data pair
based on the magnitude of gradient were created. (b) Conjugate pairs which

have different classifications and the boundary points whose conjugate pairs
are classified in the same class.

the line passing through the boundary point and perpendicular
to the boundary surface are located with their distances to the
corresponding boundary point equal to 1 /| gradient |. This idea
is very similar in concept to the use of close-opposed pairs in
locally trained piecewise linear classifiers [2]. This perpendic-
ular line can be parametrically represented as:

Xt~ X% T2 _ X T 2

21 (0) B 22(0) - N an(o).

Use of only the boundary points for additional training infor-
mation typically leads to a biased emphasis of one side of
boundary. We therefore adopt the two-sided conjugate pairs for
boundary fine-tuning. The motive behind the selection of the
conjugate pairs stems from our desire to increase the boundary
steepness between two distinct classes by narrowing the regions
of ambiguity. The oracle will provide true classification (1 or
0) for the newly generated conjugate pair query points. If all
three points (the boundary point as well as the conjugate pair)
fall into the same class, we neglect the conjugate pair and keep
only the boundary point as part of the new training data. Oth-
erwise, we choose all three points to be part of the new training




IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2, NO. 1. JANUARY 199! 135

0.91
08F
071
0.61

0.51

03r

0.1 [
0 . .

0 02 04 06 03 1

0.9

0.8

0.7

0.6

0.5

0.4 ‘

0.3

02

0.1

=]

<

0.2 04 0.6 08
(b)
Fig. 7. Ilustration of the result of using query-based learning. (b) Learn-

ing based on purely randomly selected training data with a larger size of
training data.

-

data. To illustrate, we continue with the octagonal example, a
set of 137 training data were newly generated and used to re-
train the network along with the originally randomly selected
50 training data. Fig. 6(b) shows the created conjugate pairs
which have different classifications and the boundary points
whose conjugate pairs are classified in the same class.

Fig. 7(a) shows the dramatically improved result after re-
training based on the 187 (= 50 + 137) data points. The result
of query learning is strikingly better in comparison with con-
ventional learning using 500 points of randomly selected train-
ing data [see Fig. 7(b)]. To get the best performance, the above
query-based procedure can be repetitively applied in the train-
ing so that the classification accuracy can be gradually im-
proved.

V. APPLICATION TO POWER SYSTEM SECURITY PROBLEM

One of the main aspects of power system security is static or
steady-state security. This is defined as the ability of the power
system, after a disturbance such as a line break or other rapid
load change, to reach a safe state that does not violate any op-
erating constraints [10].

Defining multidimensional static-security regions for even a
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Fig. 8. The boundary trace result for the third randomly selected two-dim
slice out of a four-dim power security assessment problem. (a) Neural net-
work generalization after being trained by 5000 randomly selected training
data. (b) Corresponding neural network generalization after being trained
by 5000 query-selected training data.

small power network is a computationally demanding task. It
involves the solution of a nonlinear programming problem with
a large number of variables and an equally large number of limit
constraints which define the feasible region of operation [11].
In addition, the amount of memory required to store the security
status under each probable network configuration is equally pro-
hibitive. This leads us to the solution by artificial neural net-
works [12].

A three-layer perceptron consists of four inputs, two hidden
layers (with 20 and 10 units separately), and one output is used
to train a four-dimensional power system security assessment
problem, where a four-dimensional input vector (representing
the voltages of the power lines) is tested to determine whether
the power plant is in a ‘‘secure’’ status or not.

To illustrate how well the query-based learning identifies the
true boundary, a randomly selected two-dimensional slice of the
four-dimensional power security assessment problem is used for
graphical presentation. Fig. 8(a) shows a two-dimensional slice
of the true boundary and the resulting representation boundary
trained with 5000 randomly selected training data. On the other
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Fig. 9. The misclassification rate as a function of the training data set car-
dinality .

hand, Fig. 8(b) shows the corresponding boundary trace that
trained with same amount of query-selected training data, which
consist of 500 initially randomly selected training data and 4500
conjugate training pairs data via two consecutive steps of quer-
ies from the oracle. The oracle is a computationally intensive
software simulator based on the algorithm presented in [13].
Fig. 9 shows the misclassification rate of 20 000 independent
test data as a function of the training data set cardinality. The
dotted line indicates the improvement of query-based learning
and the solid line indicates the improvement of randomly se-
lected data learning. Note that, in the last stage of boundary
fine-tuning (the most difficult stage for pattern recognition
tasks), the query learning is able to improve the accuracy drast-
ically with a significantly smaller amount of additional query
data compared to the improvement by randomly selected data.
To be more specific, with 5000 query training data, we are able
to achieve almost the same performance with 13 000 randomly
selected training data.

VI. CoONCLUSION

In many cases of interest, evaluation of classification solu-
tions can be very complicated and time consuming. Query
learning starts with a partially trained artificial neural network.
Data point locations with high information content can be cho-
sen through a boundary search and gradient computation itera-
tive procedure. These points of uncertainty or confusion are then
evaluated by an oracle to determine their status. The answered

1. JANUARY 1991

query clarifies this confusion. The clarification is incorporated
into the training process to further refine the performance of the
neural network. The empirical result of our query-learning ex-
amples illustrates that, in certain cases, a much more favorable
performance results as compared with that of conventional
learning based on purely randomly selected training data. This
can be true at even a significantly higher training data set car-
dinality.
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