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Particle-size distribution determination using optical sensing
and neural networks
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We present an inverse technique to determine particle-size distributions by training a layered perception neural
network with optical backscattering measurements at three wavelengths. An advantage of this approach is that,
even though the training may take a long time, once the neural network is trained the inverse problem of obtaining
size distributions can be solved speedily and efficiently.

Previously, methods such as smoothing and statistical
and Backus-Gilbert inversion techniques were used to
find profiles of particle distributions.1-4 The smooth-
ing technique requires a judicious choice of two pa-
rameters that control the smoothness of the solution.
Statistical inversion techniques require prior knowl-
edge of the statistical properties of the unknown func-
tion and the measurement errors. The Backus-Gil-
bert technique requires a good compromise between
the spread and the variance.

In this Letter we present an alternative method
based on an artificial neural network technique. The
neural network technique offers a different approach
in that the network memorizes the experience gained
by the training; even though the training may take a
long time, once the training is done the inversion can
be performed instantly. As an example, we use a
simple inverse problem to find particle distribution by
using single scattering. We use this example to dem-
onstrate that this technique has a potential for more
general multiple scattering problems.

We consider the inverse problem of finding the par-
ticle-size distribution from the measurements of back-
scattered light on an optically thin medium containing
particles. The first-order scattering approximation is
used. The measured quantity is the backscattered
intensity ,B(Xi) at three different wavelengths Xi(i = 1,
2, 3), and it is related to the size-distribution function
n(r) by a Fredholm integral equation of the first kind
as

3(X1) = J K(Xi, m, r)n(r)dr, (1)

where m is the particle refractive index, r is the radius
of the particle, and K(Xi, m, r) is the backscattering
cross section.5 We assume that the particles are
spherical so that the backscattering cross section can
be computed by the Mie solution. The inversion
problem is to find the distribution, n(r), from 3(Xi)
measurements. In real-life remote-sensing applica-

tions, a large amount of data is collected continually,
and it is important to develop a speedy inversion algo-
rithm. The neural network technique presented in
this Letter can perform speedy inversion once the neu-
ral network is trained.

Here we utilize a layered perceptron neural network
to determine particle-size distributions.6 The size-
distribution function is assumed to be a log-normal
distribution function so that it is characterized by the
mean radius rm and the standard deviation a. The
inverse problem is to obtain rim and af for given fl(Xi).
Although f(Xi) is linearly related to the distribution
n(r), the relationship between input #(Xi) and rm and u
is nonlinear. Earlier techniques such as the Backus-
Gilbert technique can handle only linear inversion. It
is also our purpose here to demonstrate that the neural
network can perform a nonlinear inversion problem.
The inverse problem by Kitamura,6 however, is to
obtain n(r) at 31 points, and therefore the relationship
between input and output is linear. We also found
that f(Xi)'s can become close together for some rm and
a, resulting in a nonunique inverse solution. An algo-
rithm is presented to find the ranges from rrm and a so
that unique solutions can be obtained. Finally we
show that increasing the number of iterations in train-
ing the neural network causes the inverse solutions to
tend to converge to the real value.

An artificial neural network can be defined as a
highly connected array of elementary processors
called neurons. Here we consider the multilayer per-
ceptron (MLP) type of artificial neural network.7-'1

As shown in Fig. 1, the MLP-type neural network
consists of one input layer, one or more hidden layers,
and one output layer. Each layer employs several
neurons, and each neuron in the same layer is connect-
ed to the neurons in the adjacent layer with different
weights. A schematic diagram of this model is depict-
ed in Fig. 1. We use three inputs [f3(X,), M3(X2), N3(X3)]
and two output neurons (rm, a). Signals pass from
the input layer, through the hidden layers, to the out-
put layer. Except in the input layer, each neuron

0146-9592/90/211221-03$2.00/0 © 1990 Optical Society of America



1222 OPTICS LETTERS / Vol. 15, No. 21 / November 1, 1990

INPUTS

I 12 13 II

o o o 0
o 0 0 0
o o o o
o o o 0

1.06 jim, and X3 = 2.12 Am. The study of O(3i) reveals
that for some values of log(rrm) and log(cr), the inputs
are close to one another, resulting in nonunique solu-
tion for rim and a with such O(Xi). For a unique solu-
tion of rim and a for a given 13(Xi), the change in #(Xi) for
a given change of rim and a must be sufficiently large.
Therefore we define the distance D, a measure of sepa-
ration of f(Xi), as

3 i1/2
D = E1 [O(Xi,apj rml) - (Xi, oh) rmn)] 2

i=l 
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Fig. 1. Structure of a multilayered perceptron-type artifi-
cial neural network.

Here we have divided log(rm) and log(a) into a number
of intervals such that

0.03 = logr(a) < log(U2) < ... log(^M) 1

and

-1 = log(rMi) < log(ri'2) <... < log(ri'mN) = 0.44.

receives a signal that is a linearly weighted sum of all
the outputs from the neurons of the former layer. The
neuron then produces its output signal by passing the
summed signal through the sigmoid function 1/(1 +
e-x)

The backpropagation learning algorithm is em-
ployed for training the neural network. Basically this
algorithm uses the gradient descent algorithm to get
the best estimates of the interconnected weights, and
the weights are adjusted after every iteration. The
iteration process stops when a minimum of the differ-
ence between the desired and actual output is
searched by the gradient descent algorithm.10 "'1

We consider the backscattering of light from a vol-
ume distribution of spherical particles with 31 radii
ranging from 0.01 to 40 jim. We assume that the size-
distribution function n(r) is governed by the log-nor-
mal function so that it is characterized by two quanti-
ties: the mean radius rm and the standard deviation a.
Therefore it is given by

n(r)ri= dN(r) -
d log r

N
27r log(a)

(2)

First we conduct a study of the forward problem of
finding 3(Xi) for various rM and a. Since the radius of
particles varies from 0.01 to 40 Am, i.e., -2 < log(r) <
1.66, the ranges for rm and a are chosen so that -1 <
log(ri') < 0.44 and 0.03 < log(cr) < 1. Thus the actual
size of particles ranging from (ri/1a) to ri'a will be
within the range for r. The inverse problem is gener-
ally nonunique in getting ri and a for given 3(Xi) if ri'
and a are allowed as in the above ranges. In what
follows, we restrict the ranges for rM and a such that
unique solution can be obtained. The algorithm in
finding such ranges is also discussed.

Both log(rm) and log(a) are divided into 10 intervals
for generating the training and testing data. We
chose the refractive index of the particle to be m = 1.53
- jO.008 and the wavelengths to be X, = 0.53 jim, X2 =

In order to ensure that the fl(Xi)'s are sufficiently
separated, we require that D exceed a minimum dis-
tance DM. To find DM, we first notice that there is a
large difference in magnitude between f3(Xi, aj, ri'm) and

3(Xi, ok, rmi) for k > j. For instance, we have f(Xi, al,
rml) 10-'5 and 3(Xi, aM, r.1) 10-6. Thus Dm
cannot be fixed for all aj but should vary according to
aj. In addition, for the same aj, the value for 3(Xi, ao,
riJ) increases from I = 1 to 1 = N. The lowest value
occurs when 1 = 1, Hence the minimum distance Dm is
chosen proportionally to 3(Xi) obtained from the first
mean radius rm1. Specifically,

Dm = D1[j32(X,, oj, rm1) + 32(X2, 0, r'm)

+ 02 (X3, a1, rM)] / (4)

where D, is a constant. Thus Dm is a fixed quantity
when D, and aj are fixed. Therefore we can determine
the allowable range of log(rm) for that particular
log(a), the lower and upper bounds of log(rrm), by
enforcing the requirement that D 2 DM. Similarly for
each log(aj), j = 1, 2, ... , we computed the corre-
sponding allowable ranges of log(rm). From the dia-
gram of all the allowable ranges for log(rm), we can
estimate the desired region for log(rn) and log(u).

The constant D, in Eq. (4) controls the size of the
allowable region for log(rm) and log(o). A large value
of D, will generally create a small allowable region, but
the values of i3(Xi) are reasonably separated, and there-
fore unique sets of 3(X;) can be obtained. On the other
hand, a small value of D, will create a large allowable
region, but the sets of 3(Xi) are close to one another.
Unique sets of #(Xi) are thus difficult to obtain, result-
ing in a large percentage of error in obtaining the
unknown size distribution. A value of D, ranging
from 0.1 to 50 has been tested for finding the suitable
D,. It was found that a value of 10 for D, is a good
compromise between the percentage error and the size
of the allowable region for log(rm) and log(a). With
such a value, the allowable region is found to be -0.328
< log(rm) < 0.44 and 0.03 < log(u) < 0.5, as shown in
Fig. 2.

Based on the allowable region discussed above, a
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Fig. 3. Performance of the neural network in generating (a)
the standard deviation of particle size, log(a), and (b) the
mean particle size, log(rin), from the given backscattered
intensities, f(Xi), in terms of absolute percentage error. In-
creasing the number of iterations tends to converge to the
true value and hence lowers the absolute percentage error.

group of 480 sets of data was generated from Eq. (1).
In order to maximize the computing accuracy of the
neural network, we first normalize all the data from
zero to unity. We use 462 data sets to train the neural
network. The remaining 18 sets are used to test the
system. Finally, as shown in Fig. 3, the results are
converted back to the original values.

Figure 3 shows the performance of the neural net-
work in terms of absolute percentage error for log(rm)
and log(ar). It is clear from the figure that an increas-
ing number of iterations tends to cause the outputs to
converge to the real value and hence lowers the abso-

lute percentage of errors. Except when the desired
outputs log(rim) and log(a) are small, the neural net-
work yields good results for most of the testing data,
with an absolute percentage of error of less than 10%.

In summary, we have presented an inverse tech-
nique of finding particle-size distribution by using op-
tical sensing and a neural network. The size-distribu-
tion function is assumed to be a log-normal function,
so that it is characterized by a mean radius ri' and a
standard deviation a. It was shown that the neural
network yields good results for the testing data, with
an absolute percentage of errors of less than 10% for
most of the testing input #(Xi). A major advantage of
this technique is that, once the neural network is
trained, the inverse problem of obtaining the size dis-
tributions can be solved speedily and efficiently (in a
small fraction of a second) by a microcomputer work-
station.
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