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1 Classification and Regression with Multilayer P erceptrons 

There have been a number of applications propceed for artificial neural network computational structures. 
The  neural network architecture currently receiving most attention as a viable computational paradigm 
with competitive performance attributes is the multilayer perceptron. -4 multilayer perceptron is a feed- 
forward neurai network which has one or more layers of hidden neurons between the input and output 
layers. The  weights of a multilayer perceptron are typically trained using back-propagation learning, an 
iterative gradient descent algorithm designed to minimize the mean squared error between the the desired 
target vector and the actual output vector [I]. 

Two major applications of the multiIayer perceptrons are Classificaiion and Regression. After the 
network is trained by available data, the task of classification is to identify which discreie class or classes 
the incoming input pattern belongs to. The task of regression, on the other hand, is to retrieve the most 
suitable output response (continuous nonlinear mapping of) the incoming input pattern. 

2 Comparative Studies in Classification and Regression 

Does a multilayer perceptron perform better than other classifiers and regression machines? By compari- 
son with some other high performance classifiers and regression machines, the current answer is yes - but 
not by much. Possibly there is an underlying iimit of performance placed on all cltssifiers and regression 
machines that  cutting edge algorithms are approaching. If so, then secondary performance attributes 
such as training speed and implementation ease must be addressed as primary. 

Other artificial neural networks have fallen from favor in an application sense because, quite simply, 
they are not competitive with other more conventional approaches. The same question must be posed in 
regard to the multilayer perceptrons. Does the layered perceptron perform better than other classifiers or 
regression machines programmed from examples using supervised learning? Although abstract analysis 
of this question may be possible in some cases, it must ultimately be answered in regard to actual 
data. Comparisons of the mu1 tilayer percep trons have been performed with nearest neighbor lookup, 
classification and regression trees (CART) and projection pursuit learning networks for such problems as 
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speech (clmification) , power security assessment (cknification), load forecasting (regression), and some 
specially designed nonlinear mappings (regression). In each case, have shown the muiti la~er perceptron 
to perform better in terms of classification or regression accuracy, albeit a t  a higher computational and 
memory price. 

In comparison with nearest neighbor lookup, the layered perceptron was shown to interpolate much 
more smoothly and with greater accuracy for the problem of power security assessment [2, 31. 

Here are some accuracy figures contrasting the layered perceptron with CART. Details of the exper- 
iments can be found in 14, 51. Indeed, these papers must be consulted to give significant meaning to 
the statistics that follow. In power load forecasting [6],  current and forecasted temperature and current 
load demand is used to forecast the future power load demand. For this problem, the worst perceptron 
performance was an error of 1.78%. CART produced an error of 1.68%. For speaker independent vowel 
classification, the perceptron again had a higher correct clbwification rate than CART, 47.4% to 38.2%. 
In the power security assessment problem, the state of a power system is determined to be safe or in 
jeopardy. Applied to this problem, the perceptron again had a lower error rate - 0.78% to 1.46% [6, 71. In 
the form of CART used in this experiment, the feature space was initially divided into planes that  were 
perpendicular to the axes. In a higher order form of CART, these planes can be oriented a t  angles. The 
higher order form of CART has given preliminary results that are closer in performance to the Iayered 
perceptron. However, in all of our studies so far, CART has never done better than a Iayered perceptron. 

The projection pursuit learning networks can be regarded as a generalization of single hidden layer 
neural networks. Unlike the neural network learning, which employs a gradient descent search using fixed 
set of nonlinear cell functions (e.g., sigmoid), the projection pursuit networks combines least squares 
fitting and Gauss Newton *optimization to nonparametrically estimate the weights as well as the nonlin- 
ear cell functions using a one dimensional data-smoother. Several specially designed nonlinear mappings 
(within a noisy training environment) are used in the comparisons, e.g., parabolic, radial, harmonic, 
statistically additive, and more complicated statistically multiplicative mappings. The muitilayer percep 
trons performed consistently better than the projection pursuit networks. For example, when applied to 
the harmonic function, the perceptrons had a smaller mean squared error compared to projection pursuit 
networks, 0.071 to 0.254 [8]. 

3 Query Learning for Classification 

One problem associated with trained classifiers is the diminishing return of information content in ran- 
domly generated training data obtained with respect to the data set cardinality. In other words, the more 
that  is learned, the harder it becomes to learn something new. To illustrate, consider the ciassification 
problem of learning the location of a point a on the interval 0 < a < 1. We choose a point a t  random on 
the unit interval. If it to the right o fa ,  we assign it a value of one. If it is to the left of a ,  the result is 0. 
It is clear that ,  after a number of data points have been generated a t  random on the unit interval, that a 
lies somewhere between the rightmost 0 and the leftmost I. Call this subintern1 C. If we g, ~ n e r a t e  a new 
data point that  does not lie in the subinterval C, we have learned nothing new. If the new point lies in the 
subinterval C, then we revise the subinterval and make its duration shorter. Doing so, however, decreases 
the chance that the next data point contains new information. That  is, the probability decreases that  the 
new data  point lies in the shorter interval. Thus, in this example, the more we learn about the location 
of the point a, the harder it is to learn. One approach to counteract this phenomenon is with the use of 
oracles in query based learning [9]. 

Consider a binary classification problem, which is totally determined by the classification boundary. 
Indeed, here is an obvious case where the importance of data to the classification can be noted. Roughly, 
the cioser a feature vector is to the concept classification boundary, the more information it contains. 
One way t o  exploit this observation is through interval halving. Between each feature vector classified 0 
and each classified 1, there exists a classification boundary. In many cases, taking the geometric midpoint 



of these two feature vectors to the oracle will result in a classification point closer to the boundary. This 
is assured, for example, if the underlying concept k convex. TO illustrate interval halving, let's return 
to the ~ r o b l e m  of finding the point a on the intern1 (0,l). After randomly generated points on this 
interval, we would expect (in the sense of statistics), that the distance between the right most zero and 
the left most one is about l / N .  Using interval halving, on the other hand, this is reduced to about 2 - N .  
T h e  acceleration in learning is indeed remarkable. 

In many machine learning applications, the source of the training data can be modeled as an  oracle. 
An oracle has the ability, when presented with an example, to give a correct classification. A cost, which 
can be very expensive (e-g., a supercomputer emulator), is typically associated with this query. The 
study of queries in classifier training paradigms is therefore a study of the manner by which oracles can 
provide good classifier training data a t  low cost. 

Our oracle based query learning is developed to help a partially trained classifier to respond to 
the question: "What don't you yet understand?" The response of the oracle is used as additional 
training data to clear the classifier's confusion. The properly classified points from the oracle are then 
introduced as additional training data for the classifier. The use of queries through such a systematic 
data  generation mechanism can be viewed as interactive learning. On the other hand, the use of only 
a n d a b l e  (or randomly generated) data, is passive learning. If done properly, the use of queries can reduce 
the cumulative cost of data drastically as compared to the case where examples are generated a t  random 
[lo,  111. 

We have proposed a network inversion algorithm for query learning. This inversion algorithm can be 
regarded as a dual algorithm of back-propagation learning. It allows generation of the network input (or 
inputs) tha t  can produce any speciiied output vector. The inversion of a network midway between two 
classifications results in a classification boundary. This boundary is the locus of input vectors that ,  with 
respect to the neural network's representation of the training data, is highly coniusing. In addition, for 
each boundary point, we can generate the classification gradient. The  gradient provides a useful measure 
of the sharpness of the multi-dimensional decision surfaces. Using the boundary point and gradient 
information, conjugate input pairs are generated and presented to an oracle for proper classification. 
This new data is used to further refine the clbssification boundary thereby increasing the classiiication 
accuracy. The  result can be a significant reduction in the training set cardinality in comparison with, for 
example, randomly generated data points. This query learning technique has been successfully applied to 
the power system security assessment problems and will be applied to some inverse problems in remote 
sensing (12, 131. 

4 Constrained Inversion for Regression 

T h a n b  to the capability of neural networks' approximating (identifying) most classes of continuous 
nonlinear function, multilayer perceptrons are widely used in nonlinear regression applications. The  
forward problem in a nonlinear functional mapping is to obtain the best approximation of the output 
vector given the input vector. The inverse problem, on the other hand, is to obtain the best approximation 
of the input vector given a specified output vector, i.e., to find the inverse function of the noniinear 
mapping, which might not exist except when the constraints are imposed on. This leads to  the constrained 
inverse problems for a trained nonlinear mapping. These problems can be found in a wide variety of 
applications in dynamic control of nonlinear systems and nonlinear constrained optimization. Most neural 
networks previously ~ roposed  for training the inverse mapping either adopted an one-way constraint 
perturbation or a twestage learning. Both of these approaches are very laborious and unreliable. 

Instead of using two neural networks for emulating the forward and inverse mappings separately, we 
applied the network inversion algorithm, which works directly on the network used to  train the forward 
mapping, yielding the inverse mapping [14]. Our approach uses one network to emulate both of forward 
and inverse nonlinear mapping without explicitly characterizing and implementing the inverse mapping. 



Furthermore, our single network inversion approach allows us to iteratively locate the optimal inverted 
solution which also satisfies some constraints imposed on the inputs. It also allows best exploitation 
of the sensitivity measure of the inputs to outputs in a nonlinear mapping. This constrained inversion 
techniques has been successfully applied to frequency selective surface design [15] and adaptive nonlinear 
control [16]. 

5 Recursive Learning of Neural Networks 

While multilayer perceptrons provide a very powerful nonlinear modeling capability, back-propagation 
learning can be very slow and inefficient. In Iinear adaptive filtering, the analog of the back-propagation 
algori t hrn is the least-mean-squares (LMS) algorithm. Steepest descent-based algorithms such as back- 
propagation or LMS are first order in that they utilize first derivative or gradient information about 
the training error to be minimized. To speed up the training process, second order algorithms may be 
employed that  take advantage of second derivative or Hessian matrix information. 

Second order information can be incorporated into multiIayer perceptron training in different ways. 
In many applications, especially in the area of pattern recognition, the training set is finite. In these 
cases, block learning can be applied using standard nonlinear optimization techniques. These techniques 
iteratively minimize the error for the compleic training set and are based on the ability to evaluate 
the total error and its derivatives with respect to the network parameters at  arbitrary values of the 
parameters. In essence, 'the training set is rerun for each function and derivative evaluation. 

Recursive training seeks to adjust the network parameters as training patterns are presented, rather 
than after a complete pass through the training set. This approach is necessary when the training set is 
infinite or a t  least orders of magnitude larger than the number of network parameters. In principle, each 
training pattern is seen only once, as would be the case in a time series filtering operation. Although in 
practice, recursive training is commonly applied to finite training sets by repeated appiication of the same 
set of patterns. Underlying this approach is the assumption that the knowledge to be extracted from the 
training set is of a statistical nature and that no single training pattern contains unique information. 

In linear adaptive filter, recursive least squares (RLS) algorithms implement second order recursive 
training. The  basic approach that underlies RLS algorithms for linear adaptive filters may also be 
applied to the training of ieed-forward ANFs in general and multilayer perceptrons in particular. RLS- 
like algorithms for multilayer perceptrons have been derived in a variety oi  ways and use different amounts 
of second order information. These derivations include the application of the extended Kalman filtering 
equations to MLP training, neuron-local linearizations of the sigmoid functions, and quadratic MLP error 
approximations. 

An approximate least squares formulation of the training problem is derived from a Linearization of 
the error function, which yields a quadratic squared-error function. We can show what approximations 
are necessary both for this least squares approximation and for its recursive soiution. We also iilustrate 
how the formulated least squares problem can be solved by either conventional RLS recursions or by the 
more numerically stable QR decomposition- based met hods popular in linear least squares filtering [IT]. 
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