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Abstract. Although certain iterative optical processors promise algorithmic 
convergence at the speed of light, little attention is normally given to the 
consequences of different path lengths required within the processor on the 
processor performance. The resulting clock skew can have significant degrad- 
ing effects on the predicted accuracy, stability, and speed of the processor, A 
similar problem occurs in iterative asynchronous artificial neural networks 
when, for example, the time delay between two neurons is proportional totheir 
physical separation. In this paper, we show that in the absence of temporal 
dispersion, certain iterative algorithms have stable steady-state solutionsthat 
are independent of clock skew. Examples include stable linear feedback and 
feedback using soft (slowly varying) nonlinearities. Both are special cases of 
using a contractive operation in the feedback path. Such processing algorithms 
can have stable steady-state solutions that are independent of clock skew. 
Feedback using hard nonlinearities, on the other hand, can result in either an 
oscillatory or a steady-state solution that depends on the clock skew. 

Subject terms: optical signal processing; neural networks; propagation skew; opticel 
feedback. 
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1. INTRODUCTION i 
1 

A number of analog'-5 and discrete6-l2 optical processors 
have been proposed that use feedback. Shamirl3 has noted 
that in such systems, the time required for feedback can vary 
significantly due to  the variation of optical path lengths.I4 In 
certain cases, disregarding this clock skew in processor analy- 
sis can lead to either unstable or drastically different imple- 
mentation results. A similar problem occurs in iterative 
asynchronous artificial neural networks when the communi- 
cation time delay between two neurons is proportional to their 
physical separation. 

Our analysis is restricted to temporally nondispersive sys- 
tems. For such systems, a temporal impulse stimulus at any 
input coordinate can appear later only as a single temporal 
impulse at any specified output coordinate. Thus, for each 
input/ output coordinate pair, there exists a single temporal 
delay. If this delay varies from coordinate pair to coordinate 
pair, the system is skewed. 

In this paper, we show that in certain feedback algorithms, 
temporally nondispersive clock skew does not affect the sta. 
bility or the steady-state solution of the processor. When an 1 
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tive algorithm uses a (possibly nonlinear) contractive 
iteraation in the feedback path, the resulting steady-state 
ope1 elution is shown to be unaffected by clock skew. Clock skew 

shown, however, to have an effect on systems such as 
,jopfie]d artificial neural networks '5.16 when hard nonlineari- 

,ies are used in the feedback path. 

I,, this section, we develop a general description for tempor- 
ally nondispersive clock skew in a feedback processor and 
then show specific instances in which that model can be used 
,,determine whether the steady-state solution is affected by 
the skew. We consider only a discrete model, although the 
concepts can be applied to analog processors. 

Let a field of N states, {s, 11 5 n 4 N}, be altered by 
feedback in a temporally nondispersive skewed processor. Let 
I,, denote the instantaneous operator that maps the previous 
states into the current nth state at time t. We can then write 

where r,,, is the clock skew corresponding to the time required 
for the states, to make a contribution to  the state s,. If we let 
t +  and assume a stable steady state, then Eq. (I) becomes 

Although not explicitly noted, this steady state may depend 
on the clock skew. If, however, Eq. (2) has but a single 
solution for all s,(m), then the clock skew has no effect on the 
steady-state solution. 

Some specific instances of such processors are now given. 

3. SOLUTION OF SIMULTANEOUS LINEAR 
EQUATIONS 

Lets, denote a vector of states at time n, f a  like-dimensioned 
forcing vector, and A a square matrix. The linear difference 
equation 

/ is known to converge to the steady-state solution 

if the spectral radius (magnitude of the maximum eigenvalue) 
of A (denoted 11 A( [  ) does not exceed one." The effects of 
clock skew on convergence and stability of this iteration are 
now considered. 

3.1. Convergence 

With reference to Eq. (I), if performed on a skewed processor, 
Eq. (3) would be implemented as* 

where f, is the nth element off and fn(t) + fn allows explicitly 

(L) in this paper arc from I lo N 

for input rise time. Letting t -+ 00 and assuming a stable 
result gives 

or equivalently, in matrix-vector form, 

If (I - A) is not singular, then the solution to this equation is 
unique and is given by Eq. (4). Clock skew therefore does not 
affect the solution. The alternatingprojection neuralnetwork 
when interpreted either homogeneously'8.~9 or in layered 
formZ0J1 from the hidden to output layer is a special case of 
this example. 

3.2. Stability 

The above analysis is conditioned on the stability of the 
skewed iterations. By letting n + m, for example, we might 
predict that the iteration x(n) =2x(n - 1) + 1 would converge 
to x(m) = -1. The difference equation, however, is clearly 
unstable and x(=) = k- if ~ ( 0 )  # -1. From the viewpoint of 
z-transform analysis, the pole of this difference equation lies 
outside the unit circle. 

A sufficient condition for stability of skewed iteration is 
given by the following: 

Lemma 1-Let A = (aij) denote a square matrix of complex 
numbers. Define A(s) = [aijexp(-srij)], where s = a + jw.  
If JJA(s)JJ < 1 for Re(s) 2 0, then Eq. (5) converges to 
Eq. (4). 

A proof is given in Sec. 9.1. Note that as a special case, we 
conclude that an iteration without skew converges if 11 All < 1 
since 

where T,, = T for all (n,m). Two important results built on 
this lemma follow: 

Lemma 2-let B = ( (aij ( ). If I ( B  (1 < I, then Eq. (5) converges 
stably to Eq. (4) for any rij 10. 

Therefore, varying the phase terms in the matrix does not 
affect the convergence stability if the zero phase iteration is 
stable. 

Lemma 3-If rij = ui + vj and ( [ A  I (  < 1, then Eq. (5) con- 
verges stably to Eq. (4) for any ui _> 0 and vj 10. 

Proofs of lemmas 2 and 3 are in Secs. 9.2 and 9.3, respectively. 
The last lemma will be applied to optical feedback systems 
later in the paper. 

4. CONTRACTIVE OPERATORS 

In this section, we explore a more general criterion for which 
clock skew does not affect steady-state results. We may write 
Eq. (2) in vector form as 

If the vector operator 19 is a contractive operator, then 
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Fig. 1. Geometrical illustration of a contractive operator. After the 
contractive operation, the signals are closer together (solid dots) 
than originally (hollow dots.) 

where the norm for a vector a is defined by 

and 0 I r < 1. If 0 I r 5 1, then 9 is said to be nonexpansive. 
The reason for the terminology is evident from the geometry 
in Fig. 1. Operating on two signals, xand y, by the operator 9 
results in two signals closer together (contractive) or at least 
not as far apart (nonexpansive). 

4.1. Convergence 
If 9 is contractive, then Eq. (8) has a unique ~olution'7-1~.22 
and there is no contribution of clock skew to the steady-state 
result. When 6 is nonexpansive, Eq. (8) can have a number of 
solutions. 

Example 1: The linear iteration discussed in the previous 
section is a special case of a contractive mapping since, from 
Eq. (61, 

The operator is contractive if 

This is clearly true if the spectral radius of A does not exceed 
one. 

Example 2: We can nonlinearly generalize Eq. (5) to 

where f,(t) + fn and g,(t) 3 g, are forcing functions. 
Assuming stability, the steady-state solution in vector form is 

where q is a pointwise nonlinear vector operator; i.e., if w = 
qz, then the nth element of w is equal to q,(z,), where q, is a 
given function. In the parlance of neural networks, q,, could be 
referred to as a sigmoid 0perator.23.2~ Using Eq. (9), the cor- 
responding operator is contractive if 

Fig. 2. Example of a soft nonlinearity. Any interval on thezaxismaps 
to a smaller interval. 

We show that the operator is contractive if the spectral radius 
of A does not exceed one and q contains soft n~nlinearitie~, 
That is, 

for all z. As illustrated in Fig. 2, this constraint has the 
property that 

As a result, 

Using the results of the previous example, the operator cor- 
responding to Eq. (1 I )  is therefore contractive and clock skew 
has no effect on the final result. 

This unique convergence constraint can be generalized to 
the requirement that for all z, 

4.2. Stability 
The following lemma establishes a sufficient condition for 
stability of the skewed operation in Eq (10). 

Lemma 4-For a given matrix A and time delays {T,,), if Eq. 
(5) converges for every f,(t) and q is nonexpansive, then 
Eq. (10) is stable. 

A proof is given in Sec. 9.4. 

5. HARD NONLINEARITIES 
Clock skew can be a factor when implementing an iterative 
algorithm with hard nonlinearities. Consider the following 
example of Hopfield's content addressable memory neural 
net~ork.15.23.25-27 

Example 1: From the three library vectors 
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Fig, 3. Examples of stability and convergence in Hopfield's model. 
iteration time in (a), (b). and (c) are in rows top to bottom (+denotes 
+I). The first row is the result of the first iteration. We see that s(0) 
(8) converges to v2 without skew, (b) oscillates with skew, and (c) 
converges to a vector with a different skew that is not in the library. 
id) Energy transitions with iteration for each case. 

we form in accordance with Hopfield's recipe the interconnec- 
tion matrix 

I A plot of the energy for these three examples is in Fig. 3(d). 

1 where N = 3, V = [v, : v2: v3], B = 2V - 1, and 1 is a matrix of 

1 6. SKEW IN OPTICAL PROCESSORS 

I 

i 

I The major source of skew in optical processors is the time 
delay resulting from the differing optical lengths (OL)28 
between input and output. For nondispersive clock skew, the 
time delay from the input point ( 6 , ~ )  to the output point (x, y) 
can be written as 

ones. We form the iteration S(n + I) = q[AS(n)], where, for 
I Sn(N, ?,(@)is the unit step function [q,(x) = 1 if x 2 0  and 
isOotherwise]. If we initialize with S(0) =[I01 1 0001 101O]T 
and iterate synchronously, the solution of the operation con- 
verges to v2. However, if this operation has a skew of three 
clocksdelaysfor r 4 , ~  and r4, and two clocks delaysfor those 
remaining, then the iteration oscillates. The iteration con- 
verges to [0010 1001 01 11ITin the case that the skew is three 
clocks delays for T ~ , ~ ,  r 4 , ~ ~ ,  T6,9, and T6,,2 and two clocks 
delays for those remaining. These three examples are respec- 
tively illustrated in Figs. 3(a) through 3(c). The energy of the 
neural network at the nth iteration is defined as 

Fig. 4. (a) Diagram of a matrix-vector multiplier; (b) side view; (c) top 
view. 

where c is the speed of light in free space. In this section, we 
show some examples of optical processor operations that are 
not affected by skew. 

Example I: A commonly used processor for performing 
matrix-vector multiplication is shown in Fig. 4(a). The top 
view of this processor, shown in Fig. 4(c), resembles a point 
source collimator. Since we are interested in only a single 
point at the output, there is no clock skew due to OL differ- 
ences from this perspective. The side view of the processor, 
shown in Fig. 4(b), is equivalent to that in Fig. 4(c) except that 
the input and output are reversed. Since there is no skew from 
this view, the composite processor has no clock skew due to 
OL differences. The total OL from (0,q) at the input plane to 
(x,O) at the output plane is given by 

OL, = OLI + 2d + OL2 = 2f + 2 4  + 2d , 

where OL, is the OLfrom (0, q) to (x, q), OL2 is from (x, q) to 
(x,O), and OLI = OL2 = f 4- 4, with A,, denoting the OL 
through the center of the lens. This equation states that OL, is 
constant for all (x, q) pairs. 

Example 2: Figure 5(a) illustrates the Stanford matrix- 
vector multiplier29 that is more light efficient than the one in 
Fig. 4(a). Since the performance is similar to that in Fig. 4(b), 
there is no skew apparent in the side view in Fig. 5(b). From the 
perspective of the top view in Fig. 5(c), however, the apparent 
point source input is incident on the detector as a cylindrical 
wave. Under a Fresnel approximation, the skew is therefore 
quadratic. The total OL for this processor is given by 

where Adenotes the sum of the OLs through the center of the 
lenses and K is a constant. The time delay for this processor is 
thus 
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Fig. 5 .  (a )  Illustration of the Stanford matrix-vector multiplier; 
(b) side view; (c )  top view. 

Therefore, this processor is temporally skewed, but the skew is 
separable. By lemmas 3 and 4, if Eq. (13) is true, any iterative 
processors that employ this Stanford matrix-vector multiplier 
using a pointwisely soft nonlinearity in the feedback path that 
satisfies Eq. (13) will converge independent of this skew. An 
example of such a processor is the alternating projection 
neural network (APNN), which uses linear feedback.''.t* 

7. FINAL REMARKS 

The primary source of clock skew in optical system is differing 
optical lengths. We have investigated the effects ofclock skew 
on the performance of iterative processors and have shown 
that clock skew does not affect the convergence and stability 
of the solution when the feedback is contractive. We also have 
shown some examples of optical systems that have no skew or 
are not affected by skew when used iteratively. 
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9. APPENDIXES 

9.1. Proof of lemma 1 

We take the Laplace transform of Eq. (5) 

Since 11 ~ ( s )  11 < I, det[I - # 0, and s(s) becomes 

S(S) = LI - ~(s l l - ' f (s )  . 

By applying the final value theorem, we obtain 

which is our desired result. 

9.2. Proof of lemma 2 

Let y be an N dimensional vector and A(s) = [ a , e~p ( -~~~ , j ) ]  
and NXN matrix. Then 

-C ZxZ 1x1 l a k i e x ~ ( - s q i ) l  l ak j ex~( - s~ j ) l  lyjl , 
i j k  

where the asterisks denote the complex conjugate for scalars 
and the complex conjugate transpose for matrices. Let zi = 
Iyi I ,  bki = l ak i exp ( -~~k i )  1, and z = [z,]. Then 

IIA(s)YII~ -C ZZZ zibkibkjzj = I I B z I I *  
i j k  

Since llyll = 11~11, I I~(s) l l  Ill~ll < I .  Since convergence is 
assured for B by assumption, we conclude that Eq. (5) con- 
verges to Eq. (4) and our proof is complete. 

9.3. Proof of lemma 3 
From the assumption, we have 

By letting 

A(s) becomes 

Since J I D , ) ]  5 1 and I J D , J J  I 1 for Re(s) Z 0, we have 

From this and lemma 1, we conclude that Eq. (5) converges to 
Eq. (4). 

9.4. Proof of lemma 4 
We rewrite Eq. (10) as 

or  equivalently, in matrix form, 
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i NONDISPERSIVE PROPAGATION SKEW IN ITERATIVE NEURAL NETWORK AND OPTICAL FEEDBACK PROCESSORS 

/ Irt I(t) denote the vector of yn(t). We take the norm of 
sn(tl) - sn(t2)' 

j,l(tI) - 1(t2)11 9 Iln[y(t,) + gn(t,)1 - v[y(t2) + s(t21111 

+ IIh(t1) - h(t2)Il 

where 

p(tl,t2) = IIg(t1) - g(t2)II + IIh(tl) - h(t2)II . 
s(t1,t2) = s(t1) - 3 

and y(t, , t2) denotes the vector o f  

i yn(tl +tZ) = 2 anm[sm(tl - rnm)  - ~ m ( t 2  - rnm)l . 
m 

Substitute Q f o r  s i n  t h e  l i n e a r  s k e w e d  i t e r a t i o n  i n  Eq. (5)and I take t h e  d i f f e r e n c e  b e t w e e n  Eq. (5) a t  t I  and t2 t o  o b t a i n  

! where 

I and i ( t l ,  t2) d e n o t e s  the vector of 

xn(tl , tZ) = C anm[Qm(tl - rnm)  - Qm(t2 - ~ n m ) l  . 
m 

We construct f ( t l ,  t2) to be c o l i n e a r  w i t h  x ( t l ,  t2). Let 

I a n y  vector  , f o r  x ( t l  .t2) = 0 , 
f( t l ,  t2) = 

C ( t l  , t2 )x( t l  ,t2) , otherwise , 

where the p r o p o r t i o n a l i t y  constant C(tl ,t2) i s  chosen so 
that ( ( f ( t , ,  t2)I( = p ( t l ,  t 2 )  Then, by construction, 

Because 11 Q(tl , t2) 11 converges to 0 b y  the assumption, Eq. 
(14) also converges: 

I or equiva len t ly ,  s i n c e  our v e c t o r s  are in a f i n i t e  dimensional 
Euclidean space, 

and our proof is complete. 
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