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(b) 
Fig. 4. (a) The equivalent circuit of an amplifier shown in [3, fig. 13.9(b), p. 5981. (b) Its unilateral model. All resistances in kiloohms 

and capacitances in picofarads. 

I -  - - .. I .. 
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(b) 
Fig. 5. (a) The equivalent circuit of an amplifier shown in [3, fig. 13.17, p. 5931. (b) Its unilateral model. All resistances are in 

kiloohms and capacitances in picofarads. 

critical frequencies of the circuits. This point is clearly illustrated 
by both examples taken from [3]. Because of the good accuracy 
of the methods presented in this paper, we can use this method in 
various applications of amplifier circuits, such as determining the 
bandwidth, stability, stability margins and closed-loop poles, etc. 
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Multidimensional Projection Windows 

WEN-CHUNG STEWART WU, KWAN F. CHEUNG, 
AND ROBERT J. MARKS, I1 

Abstract -A one-dimensional window is chosen from the large catalog 
of those available primarily due to its leakage-resolution tradeoff (LRT). Is 
it possible to generalize a 1-D window to higher dimensions such that the 
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window’s 1-D properties are homogeneously preserved? If we require that 
the window be continuous and bounded the answer is usually no. Bounded 
(projection window) generalizations do exist for the Parzen and 
Tukey-Hanning windows. The resulting windows, however, are very close 
to that window obtained by simply rotating the 1-D window into two 
dimensions. 

INTRODUCTION 

When choosing from the large catalog of standard 1-D windows 
[1]-[2], one is largely motivated by the window’s leakage-resolu- 
tion tradeoff (LRT). Is it possible to generalize these windows to 
two and higher dimensions such that the 1-D window properties 
are preserved in each 1-D slice? If we require these multidimen- 
sional windows to be bounded and continuous, the answer is 
usually negative. In the two cases considered in this correspon- 
dence where bounded 2-D generalizations do exist, the resulting 
windows are close to those obtained by the rotation generaliza- 
tion of 1-D windows [3]. 

A short review of the outer product and rotation of 1-D 
window generalization methods is given in the next section. In 
both cases, the LRT is altered in the transformation. In order to 
homogeneously maintain the 1-D window properties, the higher 
dimension window must be chosen so that its projection onto one 
dimension results in the 1-D window. Unfortunately, this re- 
quires unbounded generalizations in many cases of interest. The 
Parzen and Tukey-Hanning windows are exceptions. For the 
discrete case, bounded projection windows can be formed such 
that desired LRT is preserved inhomogeneously at a number of 
angular orientations. 

PRELIMINARIES 

There are an wealth of 1-D windows with various LRT‘s. A 
1-D window, y ( t )  has finite extent: 

W l ( t )  = W l ( t ) n I ( f P r )  
(where n(t) =1 for It( <1/2 and is zero elsewhere), is normal- 
ized with 

y ( 0 )  =1 

Y ( t )  = w , ( - t )  

and is an even function, i.e., 

The spectrum of a window is defined by 

W,( w )  = jpm wl( t )  exp( - j u t )  dt .  
m 

The area of a window is 

A = jm wl( t )  dt = W,(O).  
- m  

The magnitude of a typical window spectrum is shown in Fig. 
1. For good resolution, the main lobe width, A ,  should be small, 
and for minimal spectral leakage, the normalized side lobe mag- 
nitude, 8, should also be small. Invariably, however, decreasing 
one of these parameters increases the other. 

A 2-D window w2(t l ,  t 2 ) ,  with spectrum 

w2(01,w2> =j-m j “  w 2 ( t  1 7  t 2 ) exp[ - j (  q t ,  + w2f,)]  dt, dt, 

is commonly generated from a 1-D counterpart by either the 
outer product or window rotation techniques [3]. The outer 
product window is 

m - m  

1169 

Fig. 1. The normalized spectrum of a typical 1-D window, IW,(w)l /A.  
The values of A and 6 parameterize the window’s resolution and leakage, 

respectively. 

and the rotated window, initially suggested by Huang [4], is 

4 ,  t 2 )  = wl( /-) 
In either case, if w, is a ‘‘good” window, then so is w,. For 
certain applications, (e.g., “good” filter design) such dimensional 
generalizations are acceptable. In other cases, such as spectral 
estimation, a small perturbation in window shape can signifi- 
cantly alter results [5]. Both the outer product and the rotated 
window significantly alter the LRT of the corresponding 1-D 
window. 

To illustrate the effects of outer product and rotational dimen- 
sional generalization, we choose a boxcar window 

wl( t )  = n( t/2r). 

It follows that 

W,( w )  = 2sin( rw ) /w  

for which 

A = 6.3/r; 8 = 0.22. 

For the outer product window, in general, 

VP( w1,02) = w, ( 0 1 )  w, ( 0 2 )  

The result is a window with an identical LRT as the 1-D window 
in the t, and t ,  directions. Indeed 

w,(w1,0)  =AW,(w,) .  
However, in other directions, the LRT can be significantly al- 
tered. For example, in the ( t l ,  t z )  plane, the A parameter for the 
window resolution in the 45” directions in J? times that of the 
0” and 90’ directions. Consider, specially, the boxcar window, 
for which 

W2(w1,w2)  =4sin(rw1)sin(rw2)/(w1w,). 

The 1-D slice of this window along the 45” diagonal is 

which is the spectrum of a Bartlett (triangular) window. The 
parameters of this window with respect to those in (1) are 

A450 =&A = 8.9/r 
and 

S4, = 0 . 0 4 7 ~  (0.22)‘ = 8’. 

Clearly, the LRT is significantly altered. 
For the rotated window, the window spectrum can be written 

as 
W;”(Ol,w,) = % ( P I  

= 2nLmrW1( r ) J , (  rp )  dr (2) 
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Fig. 2. Illustration of the mechanics of forming a 1-D projection, wl(tl). 
from a 2-D circularly symmetric function $ ( r ) ,  ( r 2  = t: + t g ) .  If wl( t l )  is 
the projection of % ( r ) ,  then y ( r )  homogeneously preserves the LRT of its 
1-D counterpart. 

where 

and 

Equation ( 

r = / - .  

I is the familiar Hankel transform [6] which results 
from Fourier transforming a circularly symmetric 2-D function. 
Although the rotation window does not have the directional 
inhomogeneity of the outer product window, the LRT of the 
original window is also significantly altered. Consider the rotated 
boxcar window with spectrum 

WW( P )  = 2 4 ( 7 P ) / P .  

Here 
Arw z 7 . 7 / r  = 1.2 A 

and 
S,, = 0.13 zz 0.596. 

THE PROJECTION OR ROTATED SPECTRUM WINDOW 

The 2-D window, w!(r), that preserves the LRT of its corre- 
sponding 1-D window in all directions will be referred to as the 
projection or rotated spectrum window. The window can be 

thought of in one of two equivalent ways: 
I )  Projection 
With reference to Fig. 2, wf( r )  is the window whose projection 

is the 1-D design window, 

By straightforward manipulation, w, is recognized as the Abel 
transform of w f :  

w l ( t l )  = 2 / m n v j ( r ) / / ~ d r .  

Thus the 2-D window can be obtained from an inverse Abel 
transform [6]: 

ti 

where the prime denotes differentiation. Since y ( t , )  is zero for 
ltll > r ,  an equivalent expression is [6]: 

for Irl< r .  (4) 
2) Rotated Spectrum 
The spectrum of the projection window is the rotation of the 

spectrum of the 1-D window. That is, 

W P )  = & ( P I .  

The window can thus be obtained by an inverse Hankel trans- 
form: 

wf ( r )  = Sgm P Wl ( P Jo ( rP) dP/2 n. 

Through this definition of projection window, one can clearly see 
that the LRT of the original window is preserved in the 2-D 
generalization in all directions. 

The equivalence of this and the projection window follows 
immediately from the continuous version of the projection-slice 
theorem [ 3 ]  or, for even functions, from the equality of an Abel 
transform to Fourier Transform followed by an inverse Hankel 
transform [6]. 

Examples 

1) The Parzen Window is obtained by convolving two identical 
(Bartlett type) triangular windows and normalizing. The result is 
[71 

It11 2 

Recognizing that w ; ( r )  = 0, we obtain from (4) after some 
variable substitution: 
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BOUNDEDNESS OF THE PROJECTION WINDOW 

A problem with certain continuous projection windows is their 
unboundedness. For example, the projection window correspond- 
ing to the boxcar window is 

This result is unbounded around the ring r = T .  Similarly, for the 
Bartlett (triangular) window, we obtain 

1 
w,( r )  = - cosh-'( ~ / r )  11( r / 2 7 )  

777 

This result is unbounded at the origin. Sufficient conditions for 
w [ ( r )  to be bounded are Fig. 3. Plots of the Pamen window (dashed line), and its corresponding 

projection window (solid line). 

Fig. 4. Plots of the Tukey-Hanning window (dashed line), and its corre- 
sponding projection window (solid line). 

where 
1/2 u = ( l - r 2 )  

I 1  \ 1/2 

b =  (a  - r') 

r2  

2 
c = l + - .  

Plots of k 2 ( r ) / w 2 ( 0 )  and wl(tl) (for T = 1) are shown in Fig. 3 
using dashed and solid lines, respectively. The difference between 
the two plots is nearly indistinguishable. Thus the projection and 
rotation windows for the Parzen window are nearly identical. 

2)  The Tukey- Hunning Window is defined as 

W' ( t )  = 1 ( 1  + cos ( f )) IT( t / 2 7 ) .  
2 

Recognizing that w { ( T )  = 0, we can evaluate the resulting in- 
tegral in (4) to obtain w[(r).  Normalizing gives 

k2( r )  = w[( rT)/T 

1 r2 y . 5  cos ( T O  - sin ( 775) 
= - Jl'( - 4. 

2 1, 

The integral can be easily evaluated numerically. Plots of 
k2(r)/w2(0) and wl(tl) are shown in Fig. 4. The projection and 
rotation windows are again very similar. 

and 

( 6 )  

These conditions follow immediately upon inspection of (4). 
Equation (5),  for example, is.violated by the Bartlett window. 
Equation (6) excludes all 1-D windows that are discontinuous at 
t = 7 (e.g., Hamming and Kaiser). The necessity of this can be 
seen in Fig. 2. As in the vertical slice of w-j'(r) approaches t = 7 

from the left, the circular support requires diminishingly smaller 
intervals of integration. The value of w ~ ( T - )  is determined by 
integration over an epsilon interval. Thus, in order for wl( 7-  ) to 
be nonzero, w,"( 7- ) must be infinite. 

For digital signal processing, the boundedness of the projection 
window need not be a problem. Here, the 2-D window is set up 
in some given periodic grid (e.g., rectangular or hexagonal). The 
values in the window are chosen such that their projections [3] 
are the desired 1-D windows. A number of projection directions 
can be used. The result is a set of algebraic equations that can be 
solved to determine the values of the 2-D window. A second 
technique is to form a 2-D inverse FFT on the sampled window's 
rotated spectrum. Some preliminary work in such digital exten- 
sions has been done by Wu [8]. 

EXTENSION TO HIGHER DIMENSIONS 
For an N-D projection window, we wish to find wN ( rN ) such 

that 

dt, dt, ( 7 )  

where w l ( r l )  is a specified 1-D window and 
N 

r i  = t t .  

The integration in equation (7) can be done in stages, the N-th of 
which is 

k = 1  

wN-i(rN-1) =J  wN(rN) dt 
fN 

Comparing with (3), we conclude that wN-' (rN- ' )  is the Abel 
transform of w N ( r N ) .  Thus to generate w N ( r N ) ,  we simply need 
to perform N - 1 inverse Abel transforms on wl(rl). 
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A pedagogical N = 5 closed-form example, taken directly from 
an Abel transform table [6], is 

-i 

where 8 is the unit impulse function. 
An alternate approach to multidimensional projection windows 

follows from the property that the inverse Hankel transform of a 
Fourier transform is equivalent to an Abel transform. Thus, the 
( N  - 1) inverse Abel transform can be performed in the Fourier 
domain. Bracewell [6] has shown that these operations can be 
condensed into the single transform: 

where 4N/2) - is the Bessel function of order ( N / 2 )  - 1. 

CONCLUSIONS 
The projection window preserves the LRT of the 1-D window 

from which it is designed. This is not in general true for the outer 
product and rotation window generalizations. The Parzen and 
Tukey-Hanning windows were shown to have straightforward 
2-D projectional window equivalents. Many other commonly 
used windows, however, were shown to have unbounded projec- 
tion. Further work in the digital equivalent of the dimensional 
generalization is in order. Here, boundedness need not be an 
issue. 
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Design of a Fast Variable-Frequency 
Josephson Shift Register 

V. NANDAKUMAR AND T. VAN DUZER 

Abstract--The design of a very high speed Josephson junction shift 
register is presented. Computer simulations show that the circuit can be 
operated with a two-phase sinusoidal clock at frequencies over 60 GHz. 
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Fig. 1. One bit of the shift register comprises four writing SQUID’S and one 
Read SQUID. The dashed box encloses a cell using one clock phase. 
R ,  = I 2  0. L = 7.15 pH. R ,  =12 0, Idc = 145 PA. For signal values, see 
Fig. 3. 

The shift register is based on using nonlatching superconducting interfero- 
metric switches to shift a bias current between arms of superconducting 
loops. The operating margins of the circuit are discussed. 

I. INTRODUCTION 
Various shift registers using Josephson junctions have been 

proposed [1]-[3]. Some of them, although fast, employ com- 
plicated clocking schemes- they require clock waveforms that 
have very fast rise times, necessitating regulator junctions in-chip, 
and/or they need three-phase clocks, which, if generated by 
on-chip delay lines, fix the operating frequency. The present 
design allows the use of a two-phase sinusoidal clock, which is 
easily generated at room temperature or on-chip using a trans- 
former. A similar idea was proposed by Matisoo and Yao [4]. 
Their design differs from ours in using single junctions as switch- 
ing devices and with a different clocking scheme. A shift register 
such as the one discussed here can be used as a serial memory in 
a signal processing system, employing subsystems such as the 
20-GHz clock rate analog-to-digital converter whose design is 
described in [5]. An important requirement for a fast serial 
memory, fulfilled by the present design, is the capability of 
reading the data without interrupting the clock. 

11. CIRCUIT DESCRIPTION 
Fig. 1 shows the schematic of one bit of the shift register. Each 

bit consists of two identical cells; the first cell is shown enclosed 
by broken lines. A superconducting line carrying a dc current Idc, 
which splits into two identical branches, feeds all cells in series. 
Each branch has in it a superconducting quantum interference 
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