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I. INTRODUCTION

This paper continues further results on the analysis of a continuous
level neural networks proposed by Marks [1]. The net stores continuous level
library vectors in the neural interconnects. When a portion of a library
vector is imposed on a subset of the neurons, the networks iteratively
extrapolates the remainder. Nguyen and Holt [2] have suggested using
stochastic processing to implement the network. Optical architectures have
also been proposed [3].

A brief review of the extrapolation neural net is given in the next
section. We demonstrate that, if there is no restoration ambiguity, the
network converges when only one neuron in the network is allowed to change
state at a time, or if the net runs synchronously. The performance of the net
is also examined for the cases of insufficient and improper excitation. The
network is shown to be able to be trained one library vector at a time using
a Gram-Schmidt procedure. Lastly, imposition of further nonlinear constraints
is suggested as a technique to further increase the convergence rate.

II. THE EXTRAPOLATION NEURAL NETWORK

In this section, we established the notation for the extrapclation neural
network. Consider a set of N continuous level linearly independent vectors of
length L >N: {?n | 0£n<N }. We form the library matrix

F=[2, 1%, |...1% 1

and the neural network interconnect matrix

=E(EE) E ¥

]

where the superscript T demotes transposition. We divide the nodes into two
sets: one in which the states are known and the remainder, in which the
states are unknown. This partion may change from application to application.
Let S, , be the state of the kth node at time M. If the k*" node falls into
the known category, its state is clamped to the known value (i.e. 5, | = f, ).
The states of the remaining "floating” neurons are equal to the sum of the

inputs into the node. That is, S = i, where

k,m k
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i, =L t,, s (2)

p =1
If all neurons change state simulaneously (i.e. Sk==Sk,M_1), then the net is
said to operate synchronously. If only one neuron changes state at a time,
the network is operating asynchronously.

Let P be the number of clamped neurons. We will prove that, for either
synchronous or asynchronous operation, the neural states converge strongly to
the extrapolated library vector if the first P rows of F (denoted EP) form a
matrix of full rank. By strong convergence, we mean

m 03, -20 =0
M —> oo
N2 12 = 33 - ition is i - !
where b4 = xTx. Proof of this proposition is in Section III. Both linear
and nonlinear alteration techniques to improve the network's convergence rate

is in section VI.

Lastly, note that subsumed in the criterion that F_ be full rank is the
condition that the number of library vectors not exceed the number of known
states. That is P 2N.

Partition Notation

The partition of clamped and floating nodes can change from application
to application. The analysis in this paper, however, will be restricted to a
single application. Thus, without loss of generality, we will assume that
neurons 1 through P are clamped and the remaining nodes are floating. We
adopt the vector partitioning notation

r R S
i= [1P[1Q]

2, . 2 A
where i_ is the P-tuple of the first P elements of i and i is a vector of the
o _ . Q
remaining Q =L-P. We can thus write, for example

N AT AR PN,
Using this partition notation, we can define nodal clamping operator by

3 _ 2 T
nt-= [?PuQ]

rd s
Thus, the first P elements of i are clamped to ?k. The remaining Q nodes
"float™.

Partitioning notation for the interconnect matrix will also prove useful.
Define

I:

where T, is a P by P and T, a Q by Q matrix. The subscripts are motivated by

quadrant location. Since T is symmetric (T=T ), so is T2 and T4. Furthermore
a kY 2

_T_l =23-
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IIT. CONVERGENCE PROOFS

In this section, we prove convergence of the networks for synchronous
operation and for a case where only one neuron at a time changes state. Both
proofs require F_ be full rank. The behaviour of the network when F_ is not

i S¢ =P
full rank is also addressed.

A. Synchronous Operation

For synchronous operation, the network iteration in (2) can be written as

9

iy = T éM

The known neural states are then imposed to generate the updated state vector
gM+1 =1 i,
Thus, the iterative state equation can be written as
gM+1 =Nt gM (3)
This operation can best be visualized in an L dimensional Hilbert space.
The T matrix orthogonally projects any vector onto N dimensional subspace, T,

formed by the closure of the library vectors [4]. The clamping operator, 71,
orthogonally projects onto Q dimensional linear variety, M, formed by the set

of all L tuplets with their first P elements equal to . According to Von
Neumann's alternating projection theorem [5,6], alternating orthogonal
projections between two linear varieties strongly converge to a point common
to both. Clearly, the library vector is common to both T and 1. The

requirement that EP is full rank assures that ? is the only point of
intersection and our proof is complete. Note that the network will properly
converge for any initialization of the floating neuron states.

Convergence Solution

For a given partition with P clamped neurons, (3) can be written in
partitioned form as

?P 22 l El gP
=1 | -

_§M+1,Q _23 24 _SM,Q

(4)

The states of the P clamped neurons are not affected by their input sum.
Thus, there is no contribution to the iteration by T, and T We can
equivalently write (4) as

P
g)M+1,Q = [ 23 | !4 ] _—

1 2°

or
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- 3

Sve1,0 = ;3?P+ T, S0

If the spectral radius of T, is less than one, the steady state solution of
this difference equation can be written as

3 -1
Swg = (I -12,0" 1, % (5)

We have shown that, if EP is full rank,

_)
S°°IQ = gQ

That is, the steady state solution is the extrapolation of the library vector

7= [?P;?Q]T

B. Sequential Operation

An asynchronous network can be defined as one in which two or more
neurons do not change state at the same time [7]. Subsumed in this concept
is sequential operation wherein neural states are updated periodically in
indexed order. That is, neuron 1 is allowed to change. Then neuron 2 is
updated. After every (floating) neuron is allowed to change, the procedure is
iteratively repeated.

The convergence proof for sequential operation is based on (5) which can
be written as

Ay=B
where A = (1—24), B=23 ?P and ;=§)°°,Q. Then, the sequential operation
i -1
Evr, i T zl aix Fyar,x T (1A )xy
X =

L
-z Ay %y, x t 9

kK =1i+1
. - . . .
converges to the desired vector, y, if the spectral radius of T is less than

one. The proof is similar to that for the Gauss-Seidel algorﬁﬁqm [8] but is
not included here due to space limitations.

C. Results of Noncompliance with Conversion Criteria

1. The Underdetermined Case:

If F_ is not full rank, the intersection of the linear varieties M and T
results 'in a 1linear variety, V, of positive dimension. (Visualize, for
example, two planes intersecting in three space). The neural network, in this
case, will converge to that point in ¥ closest to the initial state wvector,
o [9]. Equivalently, 5, is the orthogonal projection of §o onto ¥. This
result is geometrically illustrated in Fig. 1.
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2. Improper clamping

Consider the case where the P clamped neurons are not the first P
elements of any library vector. The networks will respond in one of two ways:

(a) If the initialization is a linear combination of the columns of E_,
then gQ'm will be the same linear combination of the columns of EQ'

(b} Otherwise, the linear variety M formed by the initialization does not
intersect the subspace T. As illustrated in Fig. 3, the networks will
converge to that point on the linear variety closest to the subspace
[101.

When T and 1M do intersect, the sum of the inputs for the clamped nodes
approaches the clamped values. This is not the case for non- intersection.
(In fig. 2, for example, using the input sums as the states for the clamped
nodes results in U rather than S.). A large deviation between the clamped
values and the input sum in steady state thus implies improper clamped
values.

IV. LEARNING

The equation for the interconnect matrix in (1) is computationally
unacceptable. A better procedure is to train the neural network one library
vector ‘at a time. The result is a procedure for teaching the neural networks
new library vectors.

Assume we have an interconnect matrix, T, and wish to wupdate the
interconnects corre??onding to a new library vector, . As illustrated in
Fig. 3, g?projects onto T and

€= (1-1)%

. 2 .
is orthogonal to T. The & vector can easily be computed by one synchronous
iteration of the net after imposing states equal to on the neurons.

5 AWe wish to extend the dimension of T by one in the direction of £. Since
8/”8” is the unit wvector orthogonal to T, the updated interconnect matrix
+ £e"

T =T+ ——
= = ST 9

€ €
now projects any L tuplet onto the new subspace formed by the closure of T
and € or, equivalently, T and f. This procedure is similar to that of Gram-
Schmidt orthonormalization.

Clearly, if (I - g.)? = 8, the new library vector is already in the
subspace T and no updating is required. In practice, computational accuracy
will rarely allow an exact equality here. The result is that the dimension of
the subspace would be increased in a random direction dictated by
computational or other noise. Thus, in order to assure the %etworks is
learning something useful, it 1is thus advisable to compare € € to some
appropriate threshold prior to updating [11].
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V. IMPROVING CONVERGENCE

A classic technique to improve iterative convergence algorithms 1is
relaxation. Such techniques are discussed elsewhere [1,12].

An alternate technique for improving the convergence rate is by imposing
additional constraints in the iteration process. Consider, for example,
placing a dynamic range constraint on each floating node:

O Py < o,
S = ik ;g €4 < By
By Poi < By

That 1is, each node operates linearly between the lower and upper threshold.
If the input sum exceeds the upper threshold, B,, the neural state become B, .
A similar substitution for the lower threshold @, is made when appropriate.

Neural thresholds can either be predetermined or programmed. If, for
example, the library vectors correspond to pixel grey levels, predetermined
threshold values can be placed at zero and one. Alternately, the neural
thresholds can be programmed during learning. If the k'" element of a new
vector lies between o, and B,, then no change is required. If this is not the
case, either o, and B, are equated to the new value. After learning is
completed, we have

o, = min f

nk
1<n<N
and
By = max £,
1<n<N

Upper and lower thresholding the elements of a vector at preset values
can be viewed as the projection of the vector onto a box the dimensions of
which are specified by the threshold values. As illustrated in Fig. 4, the
convergence rate of the net can be improved by this procedure.

Convergence can be proven by an appeal to the results of Youla and Webb
[10] who show that alternately projecting between two or more intersecting
convex sets' results in convergence to a point common to all of the sets.
Since the box, linear variety and subspace are all convex, the theorem is
applicable here. Furthermore, since we've required a single point of
intersection between T and 1, the three set projection procedure converges to
a single point.

1 A set € is convex if ox+ (l-o)y € € V x,y € € over the interval

0<ac<1l.
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VI. CONCLUDING REMARKS

We have examined various properties of a continuous level neural network
capable of extrapolating stored library vectors. Topics on which we will be
reporting in the future include an analysis of the effects of relaxation on
convergence, an analogous table lookup neural network, alternate but
algorithmically equivalent computational architectures, fault tolerance
properties and effects of input, system and detector noise.
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Figure 2
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