
Gerchberg's extrapolation algorithm in two dimensions

Robert J. Marks 11

Gerchberg's 1-D iterative extrapolation algorithm for bandlimited signals is generalized to two dimensions
in two distinct ways. One generalization requires knowledge of the entire spectral pupil of the bandlimited
image. The second requires only knowledge of two 1-D intervals formed by the vertical and horizontal pro-
jections of the pupil. For real bandlimited images of the low-pass type, this corresponds to knowing only
the maximum x and y spatial frequencies of the image. The utilization of information of the known portion

of the image in the extrapolation process is discussed for both algorithms. The second algorithm, reformu-

lated discretely, is placed in closed form.

1. Introduction

Gerchbergl has presented a 1-D extrapolation algo-
rithm for bandlimited signals which, in iterative form,
requires only the operations of Fourier transformation
and truncation.2 3 This paper presents two distinctly
different generalizations of Gerchberg's algorithm to
two dimensions. The first generalization requires
knowledge of the shape of the spectral pupil of the
image to be extrapolated. The second requires only
knowledge of the horizontal and vertical projections of
the pupil. This latter algorithm, when discretely im-
plemented, can be placed in closed form. In certain
instances, the rectangular matrix formed by the sam-
pled image is simply multiplied on both sides by an
appropriately parameterized Sabri and Steenaart ex-
trapolation matrix.4 Implementations are presented
in Ref. 5. 

Much has recently been written on the instability (or
ill-posedness or incompletely posedness) of extrapola-
tion and super resolution algorithms.3 6 7 Three ob-
servations are in order: (1) Analysis of algorithm sta-
bility, to date, deals with the error energy of the entire
extrapolated signal. Extrapolation results should be
better near to where the signal is known.8 No allowance
has yet been made for this conjecture. (2) There have
been successful extrapolations of elementary signals and
images utilizing unstable algorithms.2 45 Required
SNRs, however, are incredibly high. (3) There do exist
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completely posed extrapolation algorithms even ac-
cording to present stability measures.3

11. Gerchberg's Algorithm

Let u (x) have a spectrum

U(fx) = Fxu(x) = f u(x) exp(-j27rfx)dx

that is nonzero only over some region Qx E fx. Defining
the gate function

(1)

we say that u is bandlimited if

f G uxdfx < 

Let Tx denote an interval on x and define the spatial
gate by

Gx (x) = 1; x Tx,
10; x T..

The extrapolation problem is: given uGx and Q, de-
termine u. The uniqueness of the result in the absence
of noise is assured by well-known analyticity argu-
ments.

Gerchberg's algorithm, in iterative form, can be
summarized as follows: (1) Fourier transform UGX; (2)
truncate the spectrum by multiplying by GQx; (3) in-
verse transform; (4) discard that portion where the
signal is known by multiplying by (1 - Gx); (5) add in
the known signal uGx; and (6) Fourier transform, go to
step 2, and repeat. From step 5, the Nth estimate can
be written as UN = uGx + Hx UN-1, where uo = uGx, Hx
= (1 - Gx)Bx, and the bandlimiting operator is defined
by Bx = Fj1 GuxF x. The convergence of UN to u as N
tends to infinity has been proven in three distinct
ways.1-3
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Ill. Generalization to Two Dimensions
Let u(x,y) have a spectrum

U(f.,fy) = Fu(x,y) = jF E u(x y) ep[j2ir(fx + fyy)]dxdy.

Let Q denote that region where U is nonzero. With
reference to Fig. 1(d), let Qx and QY denote the respec-
tive horizontal and vertical projections of Q. The image
u is said to be bandlimited if

S S Gg.GaYdfdfy < A,

where GQY is defined analogously to GoQ in Eq. (1).
Let u be known within a region T. Define the cor-

responding aperture by

GT = 1; () T,
O; (X,Y) T.

Similarly, we define the spectral pupil as

Gf = 11; (fx'fy)g Q,0

; (fXJfY) Q.

Then, in iterative form, Gerchberg's extrapolation al-
gorithm can be straightforwardly generalized to two
dimensions as follows: (1) Fourier transform uGT; (2)
multiply by spectral pupil G; (3) inverse transform; (4)
discard the region where the image is known by multi-
plying by (1 - GT); (5) add in the known signal uGT;
and (6) Fourier transform, go to step 2, and repeat.

From the above description, the Nth estimate of u
can be written from step 5 as UN = uGT + (1 - GT)-
BOUN-1, where uo = uGT and the bandlimiting operator
is defined as Bo = F-1 GQF. Equivalently, we can show
inductively that

N
UN = E HnuGT, (2)

n=o

where u = uGT, and

H = (1 - GT)Bg. (3)

Inspired by Papoulis's 1-D proof, proof of the conver-
gence of UN to U in Eq. (2) is offered in Appendix A for
some nonseparable GT'S. Implementation of this al-
gorithm on a coherent processor has recently been
proposed.9

Note that Gerchberg's algorithm in this form is sen-
sitive to the spectral pupil Q. If this area is overesti-
mated, erroneous spectral data are introduced in each
iteration. Underestimation results in deletion of
spectral information. In the next section, we present
an alternate extension of Gerchberg's algorithm to two
dimensions which requires knowledge of only Q and
Qy.

IV. Alternate Generalization

Consider the case where T consists of one or more
disjoint islands as pictured in Fig. 1(a). Consider the
1-D function corresponding to the horizontal slice of
uGT aty = yo. The duration of this function is dictated
by T. To extrapolate the slice, however, we must also
know its corresponding 1-D bandwidth interval. To
determine this bandwidth interval, consider the spec-

Fig. 1. Illustration of the equivalence of bandwidth intervals of
parallel slices of a bandlimited image.

trum in Fig. 1(d) and its inverse transform in y in Fig.
1(b). View the inverse transform from Fig. 1(d) to Fig.
1(b) as being performed along vertical slices. If the slice
intersect , we are inverse transforming a function with
compact support. From the uncertainty principle of
Fourier analysis, the result is a function which is band-
limited (in the 1-D sense) and is thus nowhere iden-
tically zero. If the slice does not intersect Q, the inverse
transform is, of course, zero. We thus conclude that the
function in Fig. 1(b) is nonzero only within the shaded
strip defined by the interval Q, The bandwidth in-
terval of the horizontal slice in Fig. 1 (a) is, therefore, Qb,
regardless of our choice of yo. Generalizing, we con-
clude that two 1-D functions corresponding to two
parallel slices of a bandlimited image have identical
bandwidth intervals. Note, as shown in Fig. 1(c) for the
vertical case, this interval can be disjoint.

With knowledge of the duration and bandwidth in-
tervals of each horizontal slice, we can apply
Gerchberg's algorithm in one dimension to each hori-
zontal slice in Fig. 1(a) and generate UGy. Then, using
the bandwidth interval QY this result can be vertically
extrapolated to yield u over the entire (x,y) plane.

Note that, unlike the generalization in the previous
section, this 2-D extrapolation scheme requires
knowledge of only Q and Qy (instead of Q). For real
bandlimited images of the low-pass type, Q is a single
centered symmetric area, and Qx and QY can be deter-
mined from the maximum frequencies of the image in
the x and y directions.

Mathematically, we can write the horizontal ex-
trapolation within Ty as I

uGy = i H-'uGT,
m=0

where

Hx = (1 - GT)BX,

B, = FG 0 ,,F,, = x,y.

Vertical extrapolation follows as

(4)

(5)
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u = s HuG, = Z H' HuGT,
n=O n=O m=0

(6)

where

Hy = (1 -Gy)By, (7)

and GY is the gate corresponding to Ty, the vertical
projection of T [see Fig. 1(a)].

V. Algorithm Comparison

A contrast between the algorithms in Secs. III and IV
is desirable. Algorithm 1, presented in Sec. III, requires
knowledge of the entire spectral pupil region Q. Algo-
rithm 2 (Sec. IV) requires only knowledge of two pro-
jections of Q: and QY We are thus utilizing less
information in this case and, as might be expected, will
in some sense diminish algorithm effectiveness.

Consider Fig. 2 in which we wish to extrapolate uGT.
Using algorithm 2, the value of the extrapolation at
point P1 , which lies within Ty, is determined solely from
information gained from the intersection of uGT with
line L1. Point P2 lies in the area where we have ex-
trapolated the horizontal extrapolation. Point P3 is a
hybrid case-formed both from information from uGT
and the horizontal extrapolation.

Thus we conclude that algorithm 2 extrapolates to a
point using only 1-D slices of the original signal and/or
previous extrapolations. Every point exterior to T,
however, is related to every point within T. This ob-
servation is made clear upon inspection of point P4 in
Fig. 2. The extrapolated value at P4 can, in principle,
be determined from the intersection of any line through
P4 that intersects T.

Algorithm 1, on the other hand, clearly relates each
interior point to each exterior point with the price that
the entire spectral region, Q, must be known.

VI. Algorithm 2 in Iterative Form

The algorithm in Sec. IV can be placed in iterative
form by rewriting Eq. (6) as

U = E E H m H'uGT,
n=O m=O

and, in the spirit of iteration, define
N n

UN = E E H- m HxuGT. (8)
n=O m=O

Illustrations of the convergence of UN to u are given in
Appendix B. Note that

(9)UN = UN-1 + VN,

where
N

UN = E_ H N-mH-uG.
m=0

Furthermore,

VN = HYVN-1 + WN,

where WN = HNUGT. Obviously,

WN = HXWN-1.

(10)

(11)

Equations (9)-(11) define an iterative form of Eq. (8)
with initialization uo = v0 = wo = uGT.

UGT

P 4

Y

P3

x

Fig. 2. Illustration of the contribution of the known portion of an
image to its extrapolation.

VII. Algorithm 2 in Closed Form

In this section, the image extrapolation algorithm in
Sec. IV is placed in closed form. Consider first the case
where GT = GGY is a rectangle centered about the or-
igin. Let uGT be sampled and placed in a rectangular
matrix UT. Then the result of the Mth 1-D horizontal
extrapolated image, aM, is, from Eq. (4),

M
aM = E T (H.)m,

m=O
(12)

where the prime denotes matrix transposition. The Hx
matrix is the discrete equivalent of Eq. (5) within Ty:
Hx = (I - O.)B,, where I denotes the identity matrix,
and C0, ij = x,y, is a square gate matrix corresponding
to G. It contains ones and zeros appropriately placed
on the diagonal and is elsewhere zero. The B, matrix,
corresponding to Bx, is

B.,= (D-1q.,:D)',

where D is the discrete Fourier transform matrix, and
GQX is the square gate matrix corresponding to G9,

From (6), we can vertically extrapolate to give
N

UNM = H2T,
n=O

(13)

where

H = (I- Oy)D-1 0 ,,D.

Note that, if T = Ty and Q = Qy, then H = H.
Substituting Eq. (12) into Eq. (13) gives

UNM = ENL2TEM, (14)

where
L

EL = E H; (Ira) = (M,n,x), (Nmy).
r0o

EL is recognized as one of Sabri and Steenaart's 1-D
extrapolation matrices.4 It can be found digitally
through straightforward matrix multiplication.

15 May 1981 / Vol. 20, No. 10 / APPLIED OPTICS 1817



Y

x

Fig. 3. Regions of convergence.

X

Ht
Fig. 4. Parametrization illustration for the case where an image is

known outside of a finite region.

The second form of the extrapolation matrix can be
found form matrix inversion. Assuming convergence,
we have

E, -- lim EL = (I - H,,)-.
L-e

Then Eq. (14) becomes

chosen y with GT. Once uGT is extrapolated into a
horizontal strip within Ty, vertical extrapolation can
be performed with a single extrapolation matrix par-
ametrized by Ty and Qy

The algorithm, in fact, is applicable to all T such that
a single vertical or horizontal extrapolation does not fill
the entire plane. Consider, for example, Fig. 3 and let
T = T4 . The horizontal extrapolation would fill T3 .
The vertical extrapolation would then fill T and T2.
Proof of convergence of Eq. (8) for the case where T =
T2 is contained in Appendix B.

Vil. Augmentation of Algorithm 2
Algorithm 2 is not applicable to the case where T is

chosen such that a single vertical or horizontal extrap-
olation fills the plane. Such a case is when T = T UT4
in Fig. 3. An alternate approach is thus necessary.

Consider first the case where u is known outside a
finite region as illustrated in Fig. 4. Denote the region
where u is not known by T. Let t and t be the cor-
responding horizontal and vertical projections.

One method of extrapolation for this case is simply
to extrapolate vertically within the t interval. Spe-
cifically, for x t,

U = UGT + (1 - GT) HGT,
n=1

where, instead of Eq. (7), we define

Hy = (1 - GT)By. (16)

Note that the image outside of the vertical strip defined
by t is not even used in this scheme.

A second method of extrapolation, equivalent to av-
eraging, uses both the t and t strips:

u = UGT + /2(1 - GT) (H. + H)uGT,
n=1

with operator definitions in Eqs. (5) and (16). This
relation can be straightforwardly placed in iterative
form:

u2 = EyZ2TEx. (15)

Some example implementations of this closed form 2-D
extrapolation scheme are given in Ref. 5.

Note that the extrapolation matrices in both Eqs. (14)
and (15) are parametrized by T and Q,; = x,y. Since
each horizontal slice of uGT is known over the same
interval Tx and has the same bandwidth, QX, the same
extrapolation matrix is used for each slice. The same
is true for the vertical extrapolation. Note again that,
if Tx = Ty and Qx = Qy, then Ey = E.

A straightforward generalization holds when GT has
a finite Tx and Ty but is not separable. For a given y
within Ty, we can extrapolate each horizontal slice of
uGT using an extrapolation matrix parametrized by the
same bandwidth interval, Q, and the interval corre-
sponding to the intersection of the horizontal line at our

UN = UN-1 + /2VN + /2WN,

VN = GtHxvN-1,

WN = GtxHyWN-1,

with initializations

uo = Gt.GtYuGT,

vo = GtyuGT,

wo = GtXuGT,

where

Gt,() = 1 s ti e = (x,y),

One might conclude that better extrapolation can be
gained by averaging the contributions of a larger and
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-larger number of radial strips. Radial extrapolation
could be similarly applied to the algorithm in Sec. VI.
Each radial strip, however, requires knowledge of an-
other projection of Q. Thus, in the limit, we would re-
quire complete knowledge of Q.

This work was generously supported by the National
Science Foundation under grant ENG-79-08009.

Appendix A

Our purpose here is to prove the convergence of UN
to u in Eq. (2) as N tends to infinity. In all cases, we will
assume Q to be a 2Wx X 2Wy rectangle centered about
the origin.. Define

G~ =f1I jj < c/2, (Al)

10; Inl >c/2,

where (cm) = (a,x) or (b,?J). In this case, the familiar
integral equation,10 l

Xr ir(fl) = 2W,, f P 2r(s) sinc2W,, ( - )d, (A2)

[where (r,c,77) = (p,a,x) or (q,b,y) and sincx = sin7rx/
7rx], has as a solution the set of prolate spheroidal wave
functions parametrized by the space-bandwidth
product 2W,1C. The eigenvalues have the property
that

O < Xr < 1. (A3)

The eigenfunctions 1kr in Eq. (A2) are obviously
bandlimited and are thus not altered by filtering:

r(n1) = 2W,, f- 4,() sinc2W,(,7 - )d#. (A4)

Equations (A2) and (A4) can be equivalently stated
in operator form as

B,,rGc = Xr4r, (A5)

BO, = 4r. (A6)

Any bandlimited image with the specified bandwidth
region, Q, can be written as

= Upqp tq. (A7)
pq

The determination of pq from uGT will be specified in
each example to follow.

Case 1: Consider first the nonseparable case when
u is known outside of an a X b rectangle. That is, GT
= 1 - GaGb. The expansion coefficients can then be
found from

Upq u1 3 GT-f p1Pqdxdy. (A8)

Using Eqs. (A5), (A6), and (2), we can inductively show
that, for n 1,

HnaP/qGT = (1-GT) (XpXq)n-1 (1 - XpXq)4'piq.

Substituting Eq. (A7) into Eq. (2) thus yields
N

UN = UGT + (1 -GT) Upqq4 pq (1- XpXq) E (XpXq)n-1
pq n=1

= UGT + (1 - GT) Z Upq p Oq[I - (XpXq)N]. (A9)
pq

From Eq. (A3) the term (XpXq)N 0 as N , and
Eq. (A9) becomes Eq. (A7).

Case 2: Here we choose GT = 1- Ga(l - Gb).
Thus, u is known everywhere but within two semi-in-
finite vertical strips T = T1 UT3 UT4 in Fig. 3. The
proof here is the same as above, except, instead of Eq.
(A8), the expansion coefficients are determined from

1 r 
Upq = 1uT'~qx

1 - Yp(l - Xq) 

Equation (A9) remains identical, except that, instead
of [1 - (XpXq)N], we obtain the term 1 - [Xp(1 - Xq)]N,
which, due to Eq. (A3), also converges to unity.

Similar proof can be generated for the cases where GT
= GaGb, 1 - (1 - Ga)(1 - Gb), Ga(1 - Gb), etc.

Appendix B

Case 1: In this section the alternate form of
Gerchberg's iterative extrapolation algorithm in two
dimensions [Eq. (8)] is proved first for the case where
GT = GaGb. Thus, Gx = Ga and GY = Gb. Also, let 
have single symmetric projections of 2W, and 2Wy.
We begin by rewriting Eq. (8) as

N N N n-1
UN = uGT + E H-uGT + E HnuGT + E Hn- mH'uGT.

n=1 n=1 n=1 m=1

(B1)

As we shall demonstrate, each of these four terms cor-
responds to the disjoint regions on the x-y plane illus-
trated in Fig. 3. The first term, uGT, is our original
image and thus exists only in region T = T1 . The sec-
ond term corresponds to the horizontal extrapolation
result and exists only in region T2. The third term
similarly exists only in T3. The final term corresponds
to the extrapolated extrapolation and exists only in
region T4 .

We will now examine the terms individually. Using
the results of Appendix A, we can express u as in Eq.
(A7), where

1 r
Upq = A uGT~,p4qdxdy.

L~ ~ ~~~X pXq -
Consider first the second term in Eq. (Bi). From Eqs.
(5), (AS), and (A6), we can inductively show that, for n

1,

HxnuGT = Gb(I - Ga) ZFUpq(I - Xp)lXp /pi/q.
pq

The second term thus becomes
N

Z HnuGT = Gb(l -Ga) E upqp l-q[ (1 -Xp)N].
n=1 pq

(B2)

(B3)

Using Eq.- (A3), this expression converges to u via Eq.
(A7) over region T2 as N tends to -. A similar analysis
can be applied to show the convergence of the third term
to u in region T3 .

To analyze the fourth term in Eq. (Bi), we first use
Eq. (B2) with n replaced by m to obtain Hx'uG. Then
applying H -m we can inductively show that, for n >
m > 0,
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H'-mH uG = (1 - Ga) (1 - Gb) E Upq4Pp1PqSpq(n,m),
pq

where

spq(n,m) = XpXq(l- Xp)m-(l - Xq)n-m-l.

If we can show that
N n

SN E E spq(n,m) (B4)
n=1 m=

tends to unity as N - , convergence to u in T4 is as-
sured.

If Ap FZ Xq, we can apply the geometric series formula
to Eq. (B4) twice and obtain

SN = IXP(l-Xq) [1-(1-q)N]
Xp - q

- V - p) [1 -(1 - p)N}.

Using Eq. (A3), we conclude that

lim SN=1.N -
The occurence of the relation X = Xq will appear

when a = b. Then

SN = (N + 1) (1 - XP)N - N(1 - XP)N-1 + 1.

Due to Eq. (A3), this relation also approaches unity.
Case 2: A similar proof can be generated for GT =

Ga(1-Gb). Consider again Eq. (Bi). For our given
GT, the first term exists only in region T = T3 in Fig. 3.
The second term will converge in region T4, the third
in T1, and the last in T2. The proof is identical to Case
1, except that 1 - Gb replaces Gb and 1 - Xq replaces
Xq.

Similar proofs can also be generated when a single
vertical or horizontal extrapolation does not fill the
entire plane. These include GT = (1-G)(1-Gb) and
(G - Gb)2 .
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Books continued from page 1814
(sodium and mercury), fluorescent lamps, and flashbulbs. Mea-
surement of light concentrates on intensities in terms of luminous
intensity of a source and at a surface. There is also a short section
on diagrams of light distributions caused by housings for light sources.
The effect of materials on light begins with the index of refraction,
polarization, reflection, interference, and absorption. Color and color
mixing cover the concepts of complementary colors, colors as per-
ceived by the eye, and color mixing by additive and subtractive
methods.

Chapter 6, the Optical Appearance of Materials, makes use of the
concepts developed in the first five chapters. It begins with a more
rigorous discussion of the index of refraction. Anisotropic indices
are touched on lightly and their relation to the appearance and
preparation of pigments is discussed. Since pigments are usually in
powdered form, one uses an average of the indices if the original ma-
terial is anisotropic. The index of refraction is directly associated
with the "hiding power" which depends on the light scattered from
the pigment-vehicle (oil) surfaces. If the difference in index between
the vehicle and pigment is large, the hiding power is large because the
pigment will scatter light. If the indices are identical there is no
scattering and the hiding power is small. However, the hiding power
is also affected by the amount of pigment: if the pigment density is
low, the hiding power may be low even though the difference in indices
is large. Furthermore, the hiding power may change with age because
of an increase in the index of the vehicle or a decrease in index of the
pigment.

Anomalous dispersion is discussed briefly because some pigments
have their anomalous dispersion regions in the visible, for example,
solid cyanin.

Particle size of the pigments also affects the opacity and surface
appearance of paintings because of the scattering. There is a short
discussion of Rayleigh scattering, followed by a section on pigment
particles and how their average size can affect color saturation.

Chapter 6 continues on the subjects of reflectance, transmittance,
and absorption of light. Glossy and matte surfaces can affect per-
ceived color, as can transparent coatings and films. Glass, glazes, and
enamels are discussed, followed by fibers and woven materials.

Chapters 7-9 discuss the origin of color in organic materials and
photoreactions. Chapter 7 is a short course in atomic and molecular
structure and chemical bonding and leads to the subject of electronic
transitions in organic molecules which is the source of color in organic
materials. Chapter 8 takes up the subject of organic dyes, how they
are applied, their historical classification, and their chemical structure.
Chapter 9 discusses the decomposition of organic materials by light,
the chemical principles involved, rates of photochemical reactions,
and mechanisms of photochemical reactions of dyes. In addition,
photochemical reactions in paper, textiles, wood, varnish, and oils are
discussed. How to minimize photochemical effects and the future
of natural organic materials conclude the chapter.

Chapters 10 and 11 discuss the origin of color in inorganic com-
pounds, pigments, and colored glass. Chapter 10 is to inorganic
compounds what Chap. 7 is to organic compounds. In it are discus-
sions of covalent bonds, charge transfer transitions, electronic con-
figuration of ions, the d-d transition, and the effect of crystal structure
on color. It closes with a short section on the effect of particle size
and concentrations on color.

Chapter 11 is concerned with artist's pigments and colored glass.
Mixing of pigments and their decomposition by light is discussed.
Colors in glass and glaze and the effect on them of light concludes this
chapter.

Chapter 12 discusses the photographic process. Photo-image
materials are restricted to the silver halides. The action of light on
silver halide grains, the spectral sensitivity of this reaction, and sen-
sitizers required to enable photographing reds and oranges, and de-
veloping and fixing images are presented. Photographic materials
can also degrade with time because organic materials are usually

continued on page 1839
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