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Optics And Neural Nets:

By R. Colin Johnson

LOS ANGELES — Last
week’s O-E/LASE '88 conference
here saw the marriage of optical
computing and neural nets. The
couple was hitched at the Neural
Network Models for Optical
Computing portion of the Jan. 10
to 15 show, sponsored by the So-
ciety of Photometric and Instru-
mentation Engincers.

Both technologies were given
a boost {rom academia_and in-
dustry.fA team of University o
Washington researchers dem-
onstrated 'how their neural ar-
chitecture could learn in a sin-
gle pass-what- it takes, others;
hundreds of passes to do. And'a

ockheed research group de-
scribed how to control mirror
perturbation in sensitive “lis-
tening” instruments.

Optical® technology has for
decades been a solution looking
for problem. Though many si-
multaneous signals can be
passed through any given node
in an optical network without
scrambling them, engineers
have been hard pressed to cap-
italize on that characteristic.

The same problem exists in

Source Array

An optical alternating projection neural network accepts input to clamp
some nodes, electronically generates a non-linear combination of the
input at its hidden nodes and sends the result around an optical feedback
loop through a spatial light modulator to its floating nodes.

traditional computer technol-
ogy. Tens, hundreds or even
thousands of parallel processors
have been fabricated on chips.
The biggest trouble isn’t with
forging the hardware links for
all these nodes but writing the
software that harnesses them.

Optical technologies promise
even more parallel processing, but
what to do with it? If traditional
parallel processors can't take full
advantage of their nodes, then

what profit is in having orders of
magnitude more nodes?

Enter neural networks,
whose main purpose is to simu-
late the manner in which bil-
lions of analog processing nodes
(nerve cells or ncurons) are con-
nected in the brain. There, each
node simultancously evaluates
the state of thousands or even
tens of thousands of incoming
messages from its neighbors.
After processing, the node then

sends on a single message to
thousands of other nodes.

Optical technology is perfect
for the massive number of con-
nections needed for neural nets,
since light beams can pass
though each other without in-
teracting. And they can be
passed through the light-sensi-
tive media separating each neu-
ral plane, which is where the
strength of connections between
neurons is stored. The network
is usually “programmed” by al-
tering the light-sensitive mate-
rial separating the planes.

Cal Tech researcher Demetri
Psaltis has demonstrated several
neural-net prototypes over the last
few years, most recently at the
IEEE conference on Neural Infor-
mation Processing Systems—Nat-
ural and Synthetic, held in Den-
ver. In some of these systems a so-
called volume hologram separated
the planes and could be altered in
real time by the actual flow of
light-encoded information among
its nodes. Such systems, when per-
fected, should be able to learn the
tasks assigned to them by exam-
ple, rather than depend upon ex-
plicit programming,.

Marriage Of Convenience

Most of the current systems
take many presentations of a
data set to learn it, since they are
based on neural network archi-
tectures such as the back-propa-
gation network fOne paper at O-
E/LASE, “though, described a
neural ~architecture’ for” optical!
technology that took but a single
presentation for any ‘particulari
set of data to be learned.

1t also was claimed to be very:
fast,  since ’its 'passive’ opticall
feedback used ‘only guided or

free-space propagation.thher?
ystems .rely-on* the “interven-
tion of slow optical devices, such
as phase conjugators, or even
islower electronics. -
The University of Washington
rofessor Robert Marks Il gave
the presentation on his collabora-
ive work with professor Les At-
as and assistants Seho Oh and
wan Cheung. The architecture
e described is called an alter-
ating projection neural network
APNN). In it, 'a collection of
odes is divided into those whose
tates are fixed and those whose
f,tates are termed “floating.”
The fixed-state nodes are ei- |
~{Continued on Page 42)




Optics, Marks’ specialty, will be used to
‘show’images to the computer and to manipulate the
data internally. “ At the front end of the computer,
where you gather the data,” Marks explains, “there
might be an array of photo-detectors that would de-
tect the image. Internal manipulation of the data that
is conventionally done electronically would be done
using light instead of electrons. It’s obviously faster;
you can'’t get much faster than light.”

More than just a search for speed is involved in
modeling the internal architecture of a neural net-
work. The hundreds of electronic connections re-
quired between the neurons, using a conventional
computer, would be impossible due to interference,
but using photons rather than electrons eliminates
that interference. The basic artificial neural network
consists of many nodes or neurons that do very sim-
ple operations, and in some models, every neuron is
connected to every other neuron. Using conven-
tional connections would require the impossible:
electrons going through electrons. Marks describes
the advantage of using optics: “If you do it optically,

photons can go through photons. Light can go
through itself, so using light gives you the nice abil-
ity to have the natural physics for intense intercon-
nections of the nodes or neurons.”

One technology available with the neural network
is parallel rather than serial processing. “One neuron
doesn’t have to wait for what another neuron does;
they all kind of do their own thing and come out
with a really neat answer.”

Reaching “a really neat answer” in neural network
parlance is called converging, and Atlas and Marks’
APNN outperforms previous thermodynamic mod-
els of neural networks in accomplishing conver-
gence efficiently and consistently. The thermody-
namic models use an energy reduction approach
which Marks says, ““doesn’t prove uniqueness of
convergence, that is, one time the neural network
converges to one thing, and another time it con-
verges to something else. So in that sense it’s a rela-
tively poor model.” Marks elaborates, **‘Our model of
the APNN draws upon a wealth of mathematical the-
ory, including projection onto convex sets, which is
arecent field of interest and analysis from which
we've been able to borrow.”

Besides convergence, the ability of a neural net-
work to generalize is a requirement of any efficient
classification network. Marks describes generaliza-
tion between the two modeling systems, ““It’s easy to
train a classifier to respond to training data. What'’s
important, however, is how it responds to new data.
Can it recognize a totally new bush?” A disadvantage
of the conventional neural network is that determin-
ing how it will respond can only be done empiri-
cally. “You actually have to expose it to the new
material and see if it responds correctly. However,
with the APNN, the math is so well developed that
we can predict the manner in which the network

generalizes, and we can write down math equations
that show whether and in what manner the network
generalizes to other than the training data.”
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The ability to generalize to new data or environ-
ments is a problem that conventional computers re-
spond to poorly. Even the recent developments in ar-
tificial intelligence, such as expert systems, have this
problem. “Neural networks offer the theoretical po-
tential to control and design the specifics of general-
ization,”” according to Atlas. “However large
amounts of data from many real-world environments
are needed to test and refine this theory.”

Training a network by example requires incredible
amounts of time to pass through the data, and the
problem with conventional neural nets is that they
can forget the earliest data by the time they are ex-
posed to the final data. This forgetting requires repet-
itive passes through the training data. However, re-
petitive passes are not required for the APNN,
because it has an elephant-quality memory. It never
forgets. A single pass through the training data is suf-
ficient.

Improved memory within the actual computer ar-
chitecture is another advantage of the APNN. The as-
sociative memory capability of the artificial neural
network could allow the APNN to identify a black
and white picture (similar to a digitized picture) of
the Mona Lisa, given only her smile. ‘““We have a ma-
trix of neurons,"” explains Marks, “that can take on
gray levels. In this matrix every neuron is connected

to every other neuron, and each neuron can assume a
value that relates to a gray level. So, having been
given a picture of the Mona Lisa, the gray levels of
that picture are imposed on the neurons and the in-
formation is stored in the interconnects,” (these in-
terconnects correspond to the synapses that connect
the neurons in the biological brain) “and remark-
ably, if the network is then given only the Mona
Lisa’s smile, the APNN could then extrapolate the
entire face of the Mona Lisa.”

The future of the APNN, is being extended to some
real world applications: A speaker-independent sys-
tem of speech recognition is being developed by At-
las and his team of graduate students. Using a large
data base containing many words from many speak-
ers, the team plans to have a demonstration system
ready in two years. In order to make the system com-
mercially acceptable, it is necessary to keep the rate
of recognition errors to a minimum. It is also essen-
tial that the remaining errors be as “‘natural” as pos-

sible. “Human voice interaction is not error-free ei-
ther,” Atlas explains. ““A key problem with
conventional recognizers is that their errors are not
at all like natural human errors. We feel that the
APNN has the potential to behave as a human does,
which would include the errors that naturally occur
in human speech recognition.” Other applications of
the APNN include efficient routing of computer
links and an automatic system to identify irregulari-
ties in electrocardiograms (EKG's).

Funding for Atlas and Marks’ APNN comes from a
variety of sources: The National Science Foundation,
The Office of Naval Research, Physio Control Corp.
and the Washington Technology Center. Although a
considerable amount of research remains to be done,
based on the available funding and the incredibly
high level of interest in the field, Marks and Atlas are
optimistic that neural network computers will be
commercially available in the near future.
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ther the input nodes or hidden nodes thalf
are set according to a non-linear functiol;i

of the input. While the hidden node
have no effect on the learning of the|
network, they have a profound affect on
the ability of the network to generalize.
Unhlike traditional semiconductor
memories that can recall only that with
which they have been programmed, neu-
ral networks often possess the peculiar
ability to generalize from their data set
and come up with accurate responses to
queries with which they have not been
specifically trained. )
For instance: Suppose an associative!

neural network is taught the cosine of
each whole degree angle from 1 degree to
360 degrees. A traditional memory would
not know how to respond to a request for
28> degrees, but a neural network wauld |

fgéneralize on its knowledge and ébmo‘lip}
with a reasonable answer. It turns out the|
inumber of specific data packets (vectors in |
!this case) that can be stored in the APNN
{is on the order of the nuber of fixed
inodcs it contains.

The floating nodes have the most inter-!
‘esting behavior. They take on a value that:
fis the sum of their inputs from the other;
inodes. The inputs to each node are multi-:
iplied by a value stored in a passive, planar?
spatial-light modulator of the kind devel-.
oped at Stanford University (Palo Alto,*
Calif) in the late 1970s. By providing:
feedback with fiber optics, a loop can be
{formed from the floating nodes into thef
spatial light modulator and then back into
the floating nodes. This feedback loop con-
verges on the “answer,” which is then read
by other devices.

Also at the conference, rescarcher

Robert Smithson f(of Lockheed Missile
and Space Corp.) used neural networks
to control mirror perturbation for sensi-
tive listening instruments.

Lockheed allocated over $330,000 in
1987 toward developing an analog neu-
ral network, largely under Smithson's
guidance (see Dec. 14, Page 51). The re-
sult was an LSI programmable-intercon-
nection chip fabricated by Siliconix Inc.
(Palo Alto, Calif.). It will be used by
Lockheed to build feedback-style neural
networks such as the energy-minimiza-
tion nets originated by professor John
Hopfield at Cal Tech. The chip is basical-
ly a crossbar switch with adjustable re-
sistor values, called weights, at each con-
nection. Smithson’s segmented active
mirror for solar observations demon-
strated that neural networks can be used
for real-time control. Since light beams
are deformed by turbulence in the atmo-
sphere, a neural network can be used to
earn about those deformations and com-
yensate by controlling the mirror.
Smithson offered a tutorial on his tech-
riques at the conference. His paper ad-
{ressed the general area of applying neu-
al network concepts to adaptive control.

In active mirror-control applications,

Smithson’s team has built both feed-for-

. ward and feedback prototypes. The feed-

back networks, of the Hopfield type, have
also been developed for target classifica-
tion. Such energy-minimizing feedback
networks may produce the first workable
neural network applications, especially
for adaptive control systems. But Smith-
son cautions that the applications in
which feedback works best is when the
system is asked to make small perturba-
tions from a known solution, as when in-
terpreting signals that have been slightly
altered by atmospheric conditions.

Smithson’s project for feed-forward ac-
tive mirror control incorporated learning
capabilities. By adapting to changing at-
mospheric conditions, it used self-pro-
gramming for different mirrors and
wave-front sensors. Analog hardware op-
erating at 10 kHz to 100 klz should be
relatively easy to build. The main re-
striction on network is the lack of archi-
tectural definition.

Currently, Smithson is studying the
convergence and stability criteria to
make the circuits more reliable. That
involves looking in detail at the ener-
gy surfaces produced and the circuit
dynamics.
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